Log in

Role of Ni Do** on Bi2O4 Thin Films for Optical, Dielectric and Photocatalytic Applications

  • Advanced Functional and Structural Thin Films and Coatings
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Ni-doped bismuth oxide (Bi2O4:Ni) thin films with varying Ni concentrations of 1–5 wt.% were successfully fabricated by the dip-coating method. The monoclinic Bi2O4 phase of all thin films was confirmed by the XRD spectra. The average crystallite size of pure Bi2O4 was 45.98 nm, which was reduced to 39.23–33.39 nm after Ni do** (1–5 wt.%). It was revealed from SEM images that pure and Ni-doped bismuth oxide thin films showed an increase in grain size ranging from 11 nm to 21 nm. The band-gap value varied from 2.00 eV to 1.77 eV. The optical properties and crystallite size were correlated with each other. Among all Ni-doped Bi2O4, 2 wt.% Ni has very strong antibacterial activity against P. aeruginosa and S. aureus with a zone of inhibition of 30 ± 0.7 mm and 30 ± 2.12 mm, respectively. The effect of Ni do** on the photocatalytic activity of Bi2O4 thin films is reported. Prepared catalysis can play a very important role in the treatment of polluted air and water. The hop** mechanism justified the dielectric parameters which follow Koop’s theory and the Maxwell–Wagner model. The thin films have been to be found ferromagnetic. High-frequency devices find the low values of dielectric constants beneficial for them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data not available / The data that has been used is confidential.

References

  1. F. Ghasemzadeh and M. E. Shayan, Nanotechnol Environ. 59 (2020)

  2. K. Gurunathan, Int. J. Hydrog. Energy. 29, 933 (2004).

    Google Scholar 

  3. C. Jiang, S.J.A. Moniz, A. Wang, and T. Zhang, J. Tang. Chem. Soc. Rev. 15, 4645 (2017).

    Google Scholar 

  4. T.D. Moustakas, Phys. Status Solidi A. 210, 169 (2013).

    Google Scholar 

  5. M.M. Khin, A.S. Nair, V.J. Babu, R. Murugan, and S. Ramakrishna, Energy Environ. Sci. 5, 8075 (2012).

    Google Scholar 

  6. M. Napari, T.N. Huq, R.L.Z. Hoye, and J.L.M. Driscoll, InfoMat. 3, 576 (2021).

    Google Scholar 

  7. X. Wu, Z. Wei, L. Zhang, X. Wang, H. Yang, and J. Jiang, J. Nanomater. 6, 45 (2014).

    Google Scholar 

  8. Z.N. Kayani, H.A. Shafiq, S. Riaz, and S. Naseem, J. Phys. Chem. Solids. 155, 110104 (2021).

    Google Scholar 

  9. S. Vempati, A. Shetty, P. Dawson, K.K. Nanda, and S.B. Krupanidhi, Thin Solid Films 524, 137 (2012).

    Google Scholar 

  10. M. Anwar, Z.N. Kayani, and A. Hassan, Opt. Mater. 118, 111276 (2021).

    Google Scholar 

  11. J. Sharma, B. Hamid, A. Kumar, and A.K. Srivastava, J. Mater. Sci. Mater. Electron. 29, 1107 (2018).

    Google Scholar 

  12. Q. Meng, and Z. Yin, Mendeleev. Commun. 29, 672 (2019).

    Google Scholar 

  13. N. Goswami, and N. Sahai, Mater. Res. Bull. 48, 351 (2013).

    Google Scholar 

  14. D.P. Dutta, M. Roy, and A.K. Tyagi, Dalton Trans. 34, 10248 (2012).

    Google Scholar 

  15. Z.N. Kayani, and H. Aslam, Adv. Powder Technol. 32, 2358 (2021).

    Google Scholar 

  16. Z.N. Kayani, A. Altaf, R. Sagheer, S. Riaz, and S. Naseem, Mater. Chem. Phys. 282, 125944 (2022).

    Google Scholar 

  17. M.M. Viana, V.F. Soares, and N.D.S. Mohallem, Ceram. Int. 36, 2047 (2010).

    Google Scholar 

  18. B. Pal, S. Dhara, P.K. Giri, and D. Sarkar, J. Alloys Compd. 647, 558 (2015).

    Google Scholar 

  19. Z.N. Kayani, S.R. Maria, and S. Naseem, Ceram. Int. 46, 381 (2020).

    Google Scholar 

  20. Z.N. Kayani, M. Sahar, S. Riaz, S. Naseem, and Z. Saddiqe, Opt. Mater. 108, 110 (2019).

    Google Scholar 

  21. A. Hassan, Z.N. Kayani, and M. Anwar, J. Mater. Sci. 22, 14398 (2021).

    Google Scholar 

  22. S. Thakur, and V. Kaur Singh, J Non Cryst Solids. 512, 60 (2019).

    Google Scholar 

  23. N. Kaur, S.K. Shahi, J.S. Shahi, S. Sandhu, R. Sharma, and V. Singh, Vacuum 178, 109429 (2020).

    Google Scholar 

  24. S. Xue, J. Wang, Q. Wu, L. Zhang, R. Dai, B. Tian, W. Wang, W. Zhang, and F. Zhang, Results Phys. 19, 103596 (2020).

    Google Scholar 

  25. G. Viruthagiri, and P. Kannan, J. Mater. Res. Technol. 8, 127 (2019).

    Google Scholar 

  26. D. Kaur, T. Sharma, and C. Madhu, J. Mater. Sci. Mater. Electron. 33, 9917 (2022).

    Google Scholar 

  27. I. Boukhris, I. Kebaili, M.S. Al-Buriahi, B. Tonguc, M.M. AlShammari, and M.I. Sayyed, Ceram Int. 46, 22888 (2020).

    Google Scholar 

  28. L. Wu, X. Liu, G. Wan, X. Peng, Z. He, S. Shi, and G. Wang, J. Chem. Eng. 448, 137600 (2022).

    Google Scholar 

  29. S. Vinoth, A.M.S. Arulanantham, S. Saravanakumar, R.S.R. Isaac, N. Soundaram, N. Chidhambaram, D. Alagarasan, S. Varadharajaperumal, M. Shkir, and S. AlFaify, J. Mater. Sci.: Mater. Electron. 32, 27060 (2021).

    Google Scholar 

  30. B.R. Kumar, B.H. Rajesh, and T.S. Rao, J. Sci. Adv. Mater. Dev. 3, 433 (2018).

    Google Scholar 

  31. E. Lim, T. Manaka, R. Tamura, and M. Iwamoto, JJAP. 45, 3712 (2006).

    Google Scholar 

  32. K.N. Devi, S.A. Devi, W.J. Singh, and K.J. Singh, J. Mater. Sci. Mater. Electron. 32, 8745 (2021).

    Google Scholar 

  33. I. Khan, I. Khan, M. Usman, M. Imran, and K. Saeed, J. Mater. Sci. Mater. Electron. 31, 8985 (2020).

    Google Scholar 

  34. K. Yang, R. Li, C. Zhu, and J. Pei, J. Mater. Res. 36, 2936 (2021).

    Google Scholar 

  35. C. Regmi, Y.K. Kshetri, T.H. Kim, R.P. Pandey, S.K. Ray, and S.W. Lee, Appl. Surf. Sci. 413, 265 (2017).

    Google Scholar 

  36. M. Shkir, B. Palanivel, A. Khan, M. Kumar, J.H. Chang, A. Mani, and S. AlFaify, Chemosphere 291, 132687 (2022).

    Google Scholar 

  37. H. Su, S. Li, L. Xu, C. Liu, R. Zhang, and W. Tan, J. Phys. Chem. Solids. 170, 110954 (2022).

    Google Scholar 

  38. Z.N. Kayani, M. Ashfaq, S. Riaz, and S. Naseem, Opt. Mater. 132, 112809 (2022).

    Google Scholar 

  39. J. Sun, S. Yu, Z. Cui, L. Hu, B. Sun, and B. Chen, J. Mater. Sci. 32, 15276 (2022).

    Google Scholar 

  40. B.L.D. Silva, B.L. Caetano, B.G.C. Andréo, R.C.L.R. Pietro, and L.A. Chiavacci, Colloids Surf. B. 177, 440 (2019).

    Google Scholar 

  41. M.J. Hajipour, A. Akbar, D. Ashkarran, J. Aberasturi, I.R. Larramendi, T. Rojo, V. Serpooshan, W.J. Parak, and M. Mahmoudi, Trends Biotechnol. 30, 499 (2012).

    Google Scholar 

  42. R. Elilarassi, and G. Chandrasekaran, Mater. Chem. Phys. 123, 450 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MS: Investigation; Formal analysis, Prof. Dr. ZNK: Conceptualization; Writing—Original Draft; Supervision; Project administration, Dr. SR: discussions, VSM analysis, Prof. Dr. SN: Writing—Review & Editing.

Corresponding author

Correspondence to Zohra Nazir Kayani.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

This manuscript is original, has not been published before, and is not currently being considered for publication elsewhere. The Corresponding Author is the sole contact for the Editorial process. She is responsible for communicating with the other authors about progress, submissions of revisions, and final approval of proofs. The manuscript has been read and approved by all named authors and there are no other persons who satisfied the criteria for authorship but are not listed. The order of authors listed in the manuscript has been approved by all authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahar, M., Kayani, Z.N., Riaz, S. et al. Role of Ni Do** on Bi2O4 Thin Films for Optical, Dielectric and Photocatalytic Applications. JOM 75, 3385–3399 (2023). https://doi.org/10.1007/s11837-023-05942-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05942-z

Navigation