Log in

Elimination of Primary NbC Carbides in HSLA Steels for Oil Industry Tubular Goods

  • Phenomena and Scales Influencing Alloy Solidification Microstructures
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Two high-strength low-alloyed steels alloyed with various Nb contents were prepared using continuous casting (CC) technology. In the round Steel 30Nb CC billet, it was the segregation of C and Nb in the central equiaxed zone that promoted the precipitation of primary NbC carbides at grain boundaries. After processing into seamless tubes, micron-sized primary NbC carbides were located in the middle of the segregation bands, surrounded by many nano-sized NbC carbides formed during the post-solidification cooling and/or hot-piercing rolling. Even when the Nb content was decreased down to 0.006 wt.%, there were still coarse primary NbC carbides in the segregation bands. However, no primary NbC carbide was found in the round Steel 30Nb billet prepared using the electroslag remelting technology. Therefore, this study revealed that a rapid solidification rate was relatively effective in eliminating primary NbC carbides compared with merely decreasing the Nb content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. X.D. Wang, W.Z. Xu, Z.H. Guo, L. Wang, and Y.H. Rong, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2010.02.026 (2010).

    Article  Google Scholar 

  2. X. Li, Z. Cai, M. Hu, K. Li, M. Hou, and J. Pan, J. Mater. Res. Technol. https://doi.org/10.1016/j.jmrt.2021.02.049 (2021).

    Article  Google Scholar 

  3. K. Xu, B.G. Thomas and R. O’malley, Metall. Mater. Trans. A. (2011). https://doi.org/10.1007/s11661-010-0428-7.

  4. G. Krauss, Metall. Mater. Trans. B. 34B, 781. (2003).

    Article  Google Scholar 

  5. C.Z. Zhu, Y. Yuan, J.M. Bai, P. Zhang, J.B. Yan, C.Y. You, and Y.F. Gu, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2018.10.084 (2019).

    Article  Google Scholar 

  6. W.K. Kim, G. Park, S.U. Koh, H.G. Jung and K.Y. Kim, Determination of critical factors affecting on hydrogen induced cracking and type i sulfide stress cracking of high strength linepipe steel. In Paper Presented at the Proceedings of the Twentieth International Offshore and Polar Engineering Conference, The International Society of Offshore and Polar Engineers (ISOPE) (Bei**g, 2010)

  7. R. Case, Electrochemical study of the Austenitic Stainless-Steel Susceptibility to Sulfide Stress Cracking in H2S-Containing Brines, Paper presented at CORROSION 2019 (NACE International, Nashville, Tennessee, USA, 2019)

  8. M. Luo, M. Liu, X.T. Wang, M.C. Li, X. Li, Z.M. Ren, G.H. Cao, and Z.H. Zhang, Eng. Fail. Anal. https://doi.org/10.1016/j.engfailanal.2019.06.095 (2019).

    Article  Google Scholar 

  9. Y. Song, C. Feng, L. Zhu, Y. Cao, and H. Ge, Mater. Sci. Forum. https://doi.org/10.4028/www.scientific.net/MSF.993.1203 (2020).

    Article  Google Scholar 

  10. J. Wang, D. Kuanhai, Y. Zhi**, L. Bing, Y. Lin, and Y. Feng, Eng. Failure Anal. https://doi.org/10.1016/j.engfailanal.2019.01.033 (2019).

    Article  Google Scholar 

  11. Z. Zhang, Y. Zheng, J. Li, W. Liu, M. Liu, W. Gao, and T. Shi, Eng. Fail. Anal. https://doi.org/10.1016/j.engfailanal.2018.09.030 (2019).

    Article  Google Scholar 

  12. T. Zeng, S. Zhang, X. Shi, W. Wang, W. Yan, and K. Yang, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2021.141845 (2021).

    Article  Google Scholar 

  13. S. Luo, M. Liu, Y. Shen, and X. Lin, J. Mater. Eng. Perform. https://doi.org/10.1007/s11665-019-03913-7 (2019).

    Article  Google Scholar 

  14. M. Ohnuma, J.I. Suzuki, F.G. Wei, and K. Tsuzaki, Scr. Mater. https://doi.org/10.1016/j.scriptamat.2007.09.026 (2008).

    Article  Google Scholar 

  15. Thermo-Calc Software TCFE7, Iron and Steel Database (Thermo-Calc Software AB, Stockholm, 2013).

    Google Scholar 

  16. H. Halfa, Steel Res. Int. https://doi.org/10.1002/srin.201200332 (2013).

    Article  Google Scholar 

  17. H. Geng, Z. Zhang, H. Tang, P. Lan, M. Luo, and J. Zhang, J. Iron Steel Res. 31, 387. ((in Chinese)) (2019).

    Google Scholar 

  18. B. Li, M. Luo, Z. Yang, F. Yang, H. Liu, H. Tang, Z. Zhang, and J. Zhang, Materials. https://doi.org/10.3390/ma12203310 (2019).

    Article  Google Scholar 

  19. Atlas for bainitic microstructures. (Tokyo, ISIJ, 1992)

  20. H. Najafi, J. Rassizadehghani, and S. Norouzi, Mater. Des. https://doi.org/10.1016/j.matdes.2010.08.007 (2011).

    Article  Google Scholar 

  21. P. Tao, H. Yu, Y. Fan, and Y. Fu, Mater. Des. https://doi.org/10.1016/j.matdes.2013.08.103 (2014).

    Article  Google Scholar 

  22. R.C. Giacomin, and B.A. Webler, ISIJ Int. https://doi.org/10.2355/isi**ternational.ISIJINT-2018-598 (2019).

    Article  Google Scholar 

  23. A. Golpayegani, F. Liu, H. Svensson, M. Andersson, and H.O. Andren, Metall. Mater. Trans. A. https://doi.org/10.1007/s11661-010-0555-1 (2011).

    Article  Google Scholar 

  24. C.L. Davis, and M. Strangwood, Mater. Sci. Technol. https://doi.org/10.1179/174328409X453262 (2009).

    Article  Google Scholar 

  25. T. Zeng, S. Zhang, X. Shi, W. Wang, W. Yan, Y. Tian, and M. Zhao, Materials. https://doi.org/10.3390/ma14185301 (2021).

    Article  Google Scholar 

  26. M.G. Lage, and A.L.V. Silva, J. Mater. Res. Technol. https://doi.org/10.1016/j.jmrt.2015.06.002 (2015).

    Article  Google Scholar 

  27. D. Chakrabarti, C. Davis, and M. Strangwood, Metall. Mater. Trans. A. https://doi.org/10.1007/s11661-008-9535-0 (2008).

    Article  Google Scholar 

  28. S. Zheng, C. Davis, and M. Strangwood, Mater. Charact. https://doi.org/10.1016/j.matchar.2014.06.008 (2014).

    Article  Google Scholar 

  29. Z. Li, Principles of Electroslag Metallurgy, Electroslag Metallurgy Theory and Practice (Metallurgical Industry Press, Bei**g, 2010), p 17. (in Chinese).

    Google Scholar 

Download references

Acknowledgement

One of authors, Tian-Yi Zeng, appreciates the helpful advice from Prof. Ying Tang at Hebei University of Technology. The authors appreciate the financial support from Youth Innovation Promotion Association of Chinese Academy of Sciences (2017233).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-Yi Zeng.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Zhao, MC., Zeng, YP. et al. Elimination of Primary NbC Carbides in HSLA Steels for Oil Industry Tubular Goods. JOM 74, 2409–2419 (2022). https://doi.org/10.1007/s11837-022-05202-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05202-6

Navigation