Log in

High-Throughput Nanoindentation Map** of Additively Manufactured T91 Steel

  • Computational Design of Alloys for Energy Technologies
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This work aims to adapt nanoindentation map** combined with a k-means algorithm as a high-throughput technique to study the nano-scale spatial changes in mechanical properties for a heterogeneous material. This technique can also classify the individual data points based on their properties. Hundreds to thousands of indents were performed on additively manufactured T91 at room temperature, 300°C, 400°C, and 500°C across a square area with a side length of 120 μm to 400 μm. From this data, the hardness and reduced modulus at each point could be calculated and mapped. Using k-means clustering, we were able to arrange the data into three or four clusters corresponding roughly to the ferritic and martensitic phases as well as one or two intermediate clusters sampling both the phases. The hardness of these two phases appears to be quite stable as a function of temperature. Nanoindentation map** and the k-means algorithm can therefore be used to rapidly assess the feasibility of heterogeneous materials under extreme conditions, such as nuclear reactor steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. In (U.S. DOE Nuclear Energy Research Advisory Committee, 2002), pp. 1.

  2. D. Buckthorpe, In Struct. Mater. Gener. IV Nucl. React. (Elsevier, 2017), pp. 1.

  3. G. Locatelli, M. Mancini, and N. Todeschini, Energy Policy 61, 1503. (2013).

    Article  Google Scholar 

  4. K.L. Murty, and I. Charit, J. Nucl. Mater. 383, 189. (2008).

    Article  Google Scholar 

  5. L.K. Mansur, A.F. Rowcliffe, R.K. Nanstad, S.J. Zinkle, W.R. Corwin, and R.E. Stoller, J. Nucl. Mater. 166, 329. (2004).

    Google Scholar 

  6. S.L. Mannan, S.C. Chetal, B. Raj, and S.B. Bhoje, Trans. Indian Inst. Met. 56, 155. (2003).

    Google Scholar 

  7. R.L. Klueh, Int. Mater. Rev. 50, 287. (2005).

    Article  Google Scholar 

  8. F. Abe, In Coal Power Plant Mater. Life Assess. Dev. Appl. (Woodhead Publishing Limited, 2014), pp. 3–51.

  9. R.L. Klueh and D.R. Harries, In High-Chromium Ferritic Martensitic Steels Nucl. Appl. (ASTM International, 2001), pp. 28.

  10. S.A. Maloy, M.R. James, and M.B. Toloczko, In Seventh Inf. Exch. Meet. Actin. Fission Prod. Partitioning Transm. (2002), pp. 669.

  11. R.L. Klueh, and A.T. Nelson, J. Nucl. Mater. 371, 37. (2007).

    Article  Google Scholar 

  12. N. Sridharan, and K. Field, Fusion Sci. Technol. 75, 264. (2019).

    Article  Google Scholar 

  13. K. Terrani, Nucl. News 63, 34. (2020).

    Google Scholar 

  14. X. Jia, and Y. Dai, J. Nucl. Mater. 343, 212. (2005).

    Article  Google Scholar 

  15. S.-H. Lee, H.-S. Na, K.-W. Lee, Y. Choe, and C. Kang, Metals (Basel). 8, 170. (2018).

    Article  Google Scholar 

  16. B. Huang, Y. Zhai, S. Liu, and X. Mao, J. Nucl. Mater. 500, 33. (2018).

    Article  Google Scholar 

  17. W.C. Oliver, and G.M. Pharr, J. Mater. Res. 7, 1564. (1992).

    Article  Google Scholar 

  18. W.C. Oliver, and G.M. Pharr, J. Mater. Res. 19, 3. (2004).

    Article  Google Scholar 

  19. A.C. Fischer-Cripps, in Nanoindentation (Springer, 2011), pp. 77–103.

  20. J.M. Wheeler, D.E.J. Armstrong, W. Heinz, and R. Schwaiger, Curr. Opin. Solid State Mater. Sci. 19, 354. (2015).

    Article  Google Scholar 

  21. A. Barnoush, P. Hosemann, J. Molina-Aldareguia, and J.M. Wheeler, MRS Bull. 44, 471. (2019).

    Article  Google Scholar 

  22. M.S. Bobji, and S.K. Biswas, J. Mater. Res. 14, 2259. (1999).

    Article  Google Scholar 

  23. W.G. Jiang, J.J. Su, and X.Q. Feng, Eng. Fract. Mech. 75, 4965. (2008).

    Article  Google Scholar 

  24. D.Q. Doan, T.H. Fang, and T.H. Chen, Int. J. Mech. Sci. 185, 105865. (2020).

    Article  Google Scholar 

  25. B. Yang, and H. Vehoff, Mater. Sci. Eng. A 400, 467. (2005).

    Article  Google Scholar 

  26. T. Chen, L. Tan, Z. Lu, and H. Xu, Acta Mater. 138, 83. (2017).

    Article  Google Scholar 

  27. N.X. Randall, M. Vandamme, and F.-J. Ulm, J. Mater. Res. 24, 679. (2009).

    Article  Google Scholar 

  28. E.D. Hintsala, U. Hangen, and D.D. Stauffer, JOM 70, 494. (2018).

    Article  Google Scholar 

  29. G. Constantinides, K.S.R. Chandran, F.-J. Ulm, and K.J. Van Vliet, Mater. Sci. Eng. A 430, 189. (2006).

    Article  Google Scholar 

  30. F.-J. Ulm, M. Vandamme, H.M. Jennings, J. Vanzo, M. Bentivegna, K.J. Krakowiak, G. Constantinides, C.P. Bobko, and K.J. Van Vliet, Cem. Concr. Compos. 32, 92. (2009).

    Article  Google Scholar 

  31. F.J. Ulm, M. Vandamme, C. Bobko, J. Alberto Ortega, K. Tai, and C. Ortiz, J. Am. Ceram. Soc. 90, 2677. (2007).

    Article  Google Scholar 

  32. Y. Chen, E. Hintsala, N. Li, B.R. Becker, J.Y. Cheng, B. Nowakowski, J. Weaver, D. Stauffer, and N.A. Mara, JOM 71, 3368. (2019).

    Article  Google Scholar 

  33. E. Koumoulos, G. Konstantopoulos, and C. Charitidis, Fibers 8, 3. (2019).

    Article  Google Scholar 

  34. G. Konstantopoulos, E.P. Koumoulos, and C.A. Charitidis, Mater. Des. 192, 108705. (2020).

    Article  Google Scholar 

  35. G. Konstantopoulos, E.P. Koumoulos, and C.A. Charitidis, Nanomaterials 10, 645. (2020).

    Article  Google Scholar 

  36. B.P. Eftink, D.A. Vega, O. El Atwani, D.J. Sprouster, Y. Suk, J. Yoo, T.E. Steckley, E. Aydogan, C.M. Cady, M. Al-Sheikhly, T.J. Lienert, and S.A. Maloy, J. Nucl. Mater. 544, 152723. (2021).

    Article  Google Scholar 

  37. O. El-Atwani, B.P. Eftink, C.M. Cady, D.R. Coughlin, M.M. Schneider, and S.A. Maloy, Scr. Mater. 199, 113888. (2021).

    Article  Google Scholar 

  38. U.D. Hangen, D.D. Stauffer, S.A. Syed Asif, In Nanomechanical Anal. High Perform. Mater. Solid Mech. Its Appl. (Springer, 2014), pp. 85–103.

Download references

Acknowledgements

The custom nanoindentation system at Bruker’s Hysitron was built under DOE SBIR In Operando SPM: Variable Pressure and Temperature, under DE-SC0013218. This work was supported by the Department of Energy, Nuclear Engineering University Programs grant NE-000008888. Support from Bruker NANO is also gratefully acknowledged. EDH and DDS are supported by Bruker. Work was performed in part at Los Alamos National Laboratory. Los Alamos National Laboratory is an affirmative action/equal opportunity employer, and is operated by Triad National Security, LLC for the National Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moujhuri Sau.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sau, M., Hintsala, E.D., Chen, Y. et al. High-Throughput Nanoindentation Map** of Additively Manufactured T91 Steel. JOM 74, 1469–1476 (2022). https://doi.org/10.1007/s11837-022-05189-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05189-0

Navigation