Log in

Localized Corrosion in Additively Manufactured Stainless Steel and Aluminum Alloys

  • Environmental Degradation of Additively Manufactured Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Localized corrosion susceptibility represents a risk to the long-term performance of all materials, additively manufactured (AM) alloys included. Understanding the impact of AM on localized corrosion resistance is at an early stage, but the unique microstructures that result from AM can have a dramatic impact on corrosion susceptibility and morphology. These microstructures also impact the response of AM alloys to standardized testing. AM 316L is shown to respond very differently to ASTM tests for intergranular corrosion susceptibility that were developed for and used to assess wrought austenitic stainless steels. The damage morphology and the impact of heat treatments are shown to vary significantly between cast A360 aluminum alloy and AM Al-10Si-Mg upon exposure to ASTM standard G85, a workhorse of aluminum alloy corrosion testing. AM build parameters can have dramatic effects on the susceptibility, likely through their impact on the lifetime of the liquid phase during manufacture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Sahasrabudhe, S. Bose, and A. Bandyopadhyay, Advances in Laser Materials Processing (Second Edition), (Woodhead Publishing, Cambridge, 2018) pp. 507–539. https://doi.org/10.1016/B978-0-08-101252-9.00017-0.

  2. D. Herzog, V. Seyda, and E. WyciskEmmelmann, Acta Mater. 371–392. https://doi.org/10.1016/j.actamat.2016.07.019 (2016).

  3. P. Hanzl, M. Zetek, T. Bakša, and T. Kroupa, Procedia Eng. 1405–1513. https://doi.org/10.1016/j.proeng.2015.01.510 (2015).

  4. D.D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe, Int. Mater. Rev. 133–164. https://doi.org/10.1179/1743280411Y.0000000014 (2012).

  5. K.M. Mantrala, M. Das, V.K. Balla, C.S. Rao, and V.V.S. KesavaRao, Front. Mech. Eng. https://doi.org/10.3389/fmech.2015.00002 (2015).

    Article  Google Scholar 

  6. H. Hack, R. Link, E. Knudsen, B. Baker, and S. Olig, Addit. Manuf. 105–115. https://doi.org/10.1016/j.addma.2017.02.004 (2017).

  7. E. Liverani, S. Toschi, L. Ceschini, and A. Fortunato, J. Mater. Process. Technol. 255–263. https://doi.org/10.1016/j.jmatprotec.2017.05.042 (2017).

  8. F. Bartolomeu, M. Buciumeanu, E. Pinto, N. Alves, O. Carvalho, F.S. Silva, and G. Miranda, Addit. Manuf. https://doi.org/10.1016/j.addma.2017.05.007 (2017).

    Article  Google Scholar 

  9. K.N. Amatoa, S.M. Gaytana, L.E. Murra, E. Martinez, P.W. Shindo, J. Hernandez, S. Collins, and F. Medina, Acta Mater. 2229–2239. https://doi.org/10.1016/j.actamat.2011.12.032 (2012).

  10. G. Sander, J. Tan, P. Balan, O. Gharbi, D.R. Feenstra, L. Singer, S. Thomas, R.G. Kelly, J.R. Scully, and N. Birbilis, Corrosion 1318–1350. https://doi.org/10.5006/2926 (2018).

  11. S. Cheruvathur, E.A. Lass, and C.E. Campbell, JOM. 930-942. https://doi.org/10.1007/s11837-015-1754-4 (2016).

  12. G. Sander, S. Thomas, V. Cruz, M. Jurg, N. Birbilis, X. Gao, M. Brameld, and C.R. Hutchinson, J. Electrochem. Soc. C250. https://doi.org/10.1149/2.0551706jes (2017).

  13. M. Ziętala, T. Durejko, M. Polański, I. Kunce, T. Płociński, W. Zieliński, M. Łazińska, W. Stępniowski, T. Czujko, K.J. Krzysztof, J. Kurzydłowski, and Z. Bojar, Mater. Eng., A Sci. 1–10. https://doi.org/10.1016/j.msea.2016.09.028 (2016).

  14. X. Lou, P.L. Andresen, and R.B. Rebak, J. Nucl. Mater. 182–190. https://doi.org/10.1016/j.jnucmat.2017.11.036 (2018).

  15. D. Kong, C. Dong, X. Ni, and X. Li, npj Mater Degrad. 24. https://doi.org/10.1038/s41529-019-0086-1 (2019).

  16. D.A. Macatangay, S. Thomas, N. Birbilis, and R.G. Kelly, Corrosion 153–157. https://doi.org/10.5006/2723 (2018).

  17. J.R. Trelewicz, G.P. Halada, O.K. Donaldson, and G. Manogharan, JOM 850–859. https://doi.org/10.1007/s11837-016-1822-4 (2016).

  18. G.N. Nigon, O.B. Isgor, and S.J. Pasebani, J. Electrochem. Soc. 167. https://doi.org/10.1149/1945-7111/abc5dd (2020).

  19. A. Yadollahi, N. Shamsaei, S.M. Thompson, and D.W. Seely, Mater. Eng., A Sci. 171–183. https://doi.org/10.1016/j.msea.2015.07.056 (2015).

  20. A262, A. S. Standard Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels. ASTM Int. West Conshohocken, PS 01, 1–17 (2014). https://doi.org/10.1520/A0262-02AE03.

  21. Y. Zhong, L. Liu, S. Wikman, D. Cui, and Z. Shen, J. Nucl. Mater. 170–178. https://doi.org/10.1016/j.jnucmat.2015.12.034 (2016).

  22. S. Gao, Z. Hu, M. Duchamp, P.S. Sankara Rama Krishnan, S. Tekumalla, X. Song, and M. Seita, Acta Mater. 366–377. https://doi.org/10.1016/j.actamat.2020.09.015 (2020).

  23. M. Laleh, A.E. Hughes, W. Xu, N. Haghdadi, K. Wang, P. Cizek, I. Gibson, and M.Y. Tan, Corros. Sci. 108189. https://doi.org/10.1016/j.corsci.2019.108189 (2019).

  24. M. Terada, M. Saiki, I. Costa, and A.F. Padilha, J. Nucl. Mater. 40–46. https://doi.org/10.1016/j.jnucmat.2006.06.010 (2006).

  25. T. Amadou, H. Sidhom, and C. Braham, Metall. Mater. Trans. A 3499–3513. https://doi.org/10.1007/s11661-004-0187-4 (2004).

  26. M. Momeni, M.H. Moayed, and A. Davoodi, Corros. Sci. 2653–2660. https://doi.org/10.1016/j.corsci.2010.04.015 (2010).

  27. A.A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, M. Carboneras, and R. Arrabal, Acta Mater. 2239–2251. https://doi.org/10.1016/j.actamat.2006.11.021 (2007).

  28. A.Y. Chen, W.F. Hu, D. Wang, Y.K. Zhu, P. Wang, J.H. Yang, X.Y. Wang, J.F. Gu, and J. Lu, Scr. Mater. 264–268. https://doi.org/10.1016/j.scriptamat.2016.11.032 (2017).

  29. A.S.M. Paroni, N. Alonso-Falleiros, and R. Magnabosco, Corrosion 1039–1046. https://doi.org/10.5006/1.3278231 (2006).

  30. H. Sidhom, T. Amadou, H. Sahlaoui, and C. Braham, Metall. Mater. Trans. A 1269–1280. https://doi.org/10.1007/s11661-007-9114-9 (2007).

  31. G.W. Kubacki, J.P. Brownhill, and R.G. Kelly, Corrosion 1527–1540. https://doi.org/10.5006/3318 (2019).

  32. M. Cabrini, F. Calignano, P. Fino, S. Lorenzi, M. Lorusso, D. Manfredi, C. Testa, and T. Pastore, Materials 1051. https://doi.org/10.3390/ma11071051 (2018).

  33. R.I. Revilla, J. Liang, S. Godet, and I.D. Graeve, J. Electrochem. Soc. C27. https://doi.org/10.1149/2.0461702jes (2016).

Download references

Acknowledgements

D.M. and R.K. are supported by the Office of Naval Research, Contract No. N00014-17-1-2533 (Dr. Airan Perez, Program Manager). G.K. and R.K. would like to recognize Arconic and Dr. Lynne Karabin for providing all aluminum alloys used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. G. Kelly.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macatangay, D.A., Kubacki, G.W. & Kelly, R.G. Localized Corrosion in Additively Manufactured Stainless Steel and Aluminum Alloys. JOM 74, 1651–1658 (2022). https://doi.org/10.1007/s11837-022-05181-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05181-8

Navigation