Log in

Direct Extraction of Nickel and Copper from Low-Grade Nickel Sulfide Ore by Chlorination Roasting with Mixed MgCl2·6H2O and NaCl

  • Progress on Recovery of Critical Raw Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A new extraction technology of chlorination roasting with a mixture of MgCl2·6H2O and NaCl was investigated to co-extract nickel and copper from low-grade nickel ores. The effects of some key factors on the extraction of nickel, copper, and iron were studied, and the results show that,when the roasting temperature is 850°C, the roasting time is 1.5 h, the mass ratio of magnesium chloride hexahydrate to sodium chloride is 5:2, the mass ratio of ore to chlorination agent is 1:0.6, and the ore particle size is 180–200 mesh, the extraction of nickel and copper can reach 83.6% and 81.3%, respectively, but less than 3% of impurity iron enters the leach solution. XRD and SEM were used to analyze the mineral phase of the roasted products and leach residue to determine the phase transformation. The kinetics of the chlorination process were investigated by the Kissinger and Flynn–Wall–Ozawa method to determine the average activation energy and the kinetic equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.F. Sahayaraj, J. Venkatesh, R. Raghu, R.S. Kumar, and R. Subbiah, Mater Today Proc (2021).

  2. R.A. Hussain, and I. Hussain, J Solid State Chem 277, 316. (2019).

    Article  Google Scholar 

  3. J.E. Kanyo, S. Schaffner, R.S. Uwanyuze, and K.S. Leary, J Eur Ceram Soc 40, 4955. (2020).

    Article  Google Scholar 

  4. S.M.A. Shibli, G.J. Harikrishnan, V.R. Anupama, K.S. Chinchu, and B.N. Meena, Surf Coat Technol 262, 48. (2015).

    Article  Google Scholar 

  5. M. Liu, S. Su, Y. Yao, X. Wu, N. Cai, and Q. Guan, Acta Petrolog Sin 36, 1151. (2020).

    Article  Google Scholar 

  6. I.A. Dourgham, K.M. Fawzy, and H.E. Frimmel, Arab J Geosci 10, 1. (2017).

    Article  Google Scholar 

  7. E. Pakostova, B.M. Grail, and D.B. Johnson, Miner Eng 106, 102. (2017).

    Article  Google Scholar 

  8. S. Li, H. Zhong, Y. Hu, J. Zhao, Z. He, and G. Gu, Biores Technol 153, 300. (2014).

    Article  Google Scholar 

  9. S. He, J. Wang, and J. Yan, Hydrometallurgy 104, 235. (2010).

    Article  Google Scholar 

  10. S. He, C. Liao, X. Wang, and J. Wang, Min Metall Explor 37, 433. (2020).

    Google Scholar 

  11. A. Kritskii, K. Karimov, and S. Naboichenko, Solid State Phenom 299, 1052. (2020).

    Article  Google Scholar 

  12. W. **ao, X. Liu, and Z. Zhao, Hydrometallurgy 194, 105353. (2020).

    Article  Google Scholar 

  13. N. Safitri, M.Z. Mubarok, I.U. Meidji, J. Hardi, and H. Jayadi, J Phys Conf Ser 1763, 012044. (2021).

    Article  Google Scholar 

  14. N. Picazo-Rodríguez, D. Ma, J. Soria-Aguilar, A. Martínez-Luévanos, and F.R. Carrillo-Pedroza, Miner Eng 10, 1. (2020).

    Google Scholar 

  15. Z. Moravvej, A. Mohebbi, and S. Daneshpajouh, Mater Manuf Process 33, 1. (2018).

    Article  Google Scholar 

  16. F. Cui, W. Mu, Y. Zhai, and X. Guo, Russ J Non-Ferr Met 61, 27. (2020).

    Article  Google Scholar 

  17. Q. Sun, H. Cheng, X. Mei, Y. Liu, and X. Lu, Sci Rep 10, 9916. (2020).

    Article  Google Scholar 

  18. W. Mu, F. Cui, Z. Huang, Y. Zhai, X. Qian, and S. Luo, J Clean Prod 177, 371. (2018).

    Article  Google Scholar 

  19. F. Cui, W. Mu, S. Wang, H. **n, Q. Xu, Y. Zhai, and S. Luo, Miner Eng 128, 104. (2018).

    Article  Google Scholar 

  20. W. Mu, Z. Huang, H. **n, S. Luo, and Q. Xu, JOM 71, 4647. (2019).

    Article  Google Scholar 

  21. P.V. Aleksandrov, A.S. Medvedev, M.F. Milovanov, V.A. Imideev, S.A. Kotova, and D.O. Moskovskikh, Int J Miner Process 161, 13. (2017).

    Article  Google Scholar 

  22. C. Xu, H.W. Cheng, G.S. Li, C.Y. Lu, X.G. Lu, X.L. Zou, and Q. Xu, Int J Miner Metall Mater 24, 377. (2017).

    Article  Google Scholar 

  23. F. Cui, W. Mu, W. Shuai, H. **n, H. Shen, X. Qian, Y. Zhai, and S. Luo, Sep Purif Technol 195, 149. (2018).

    Article  Google Scholar 

  24. W. Mu, F. Cui, H. **n, Y. Zhai, and Q. Xu, Hydrometallurgy 191, 105187. (2020).

    Article  Google Scholar 

  25. F. Cui, W. Mu, Y. Zhai, and X. Guo, Sep Purif Technol 239, 116577. (2020).

    Article  Google Scholar 

  26. X. Song, G. Liu, Z. Sun, and J. Yu, Asia-Pac J Chem Eng 7, 221. (2012).

    Article  Google Scholar 

  27. H.E. Kissinger, Anal Chem 29, 1702. (1957).

    Article  Google Scholar 

  28. S. Vyazovkin, Molecules 25, 1. (2020).

    Article  Google Scholar 

  29. J.H. Flynn, and L.A. Wall, J Polym Sci Part B 4, 323. (1966).

    Article  Google Scholar 

  30. T. Ozawa, Bull Chem Soc Jpn 38, 1881. (1965).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (No. 52074069), the Natural Science Foundation of Hebei Province (No. E2020501022), the Science and Technology Project of Hebei Education Department (No. ZD2021331) and the Fundamental Research Funds for the Central Universities (No. N182304016) for the financially supported of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenning Mu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 248 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Mu, W., Wang, L. et al. Direct Extraction of Nickel and Copper from Low-Grade Nickel Sulfide Ore by Chlorination Roasting with Mixed MgCl2·6H2O and NaCl. JOM 74, 1989–1999 (2022). https://doi.org/10.1007/s11837-021-05122-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-05122-x

Navigation