Log in

Extraction of Lithium from Brine Solution by Hydrolysis of Activated Aluminum Powder

  • Manufacturing with Recycled Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Activated aluminum powder has been used to extract lithium from Mg-Li mixed solution via a hydrolysis–adsorption reaction. First, activated aluminum powder was prepared under the optimal conditions of NaCl addition of 70%, ball-milling time of 3 h, and ball-to-powder mass ratio of 20:1. Then, the activated aluminum powder was added into the Mg-Li mixed solution to extract lithium. X-ray diffraction analysis indicated that Li+ was adsorbed by freshly formed Al(OH)3 in the form of LADH-Cl [LiCl·2Al(OH)3·mH2O]. Under the optimal conditions of reaction time of 3 h, Al/Li molar ratio of 4:1 for activated aluminum powder addition, and reaction temperature of 70°C, lithium precipitation exceeded 90% while magnesium precipitation was controlled at 13%. These results indicate that activated aluminum powder can efficiently extract lithium from Mg-Li mixed solution via a hydrolysis–adsorption reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y. Cui and S.M. Xu, Chin. J. Chem. Eng. 23, 315 (2015).

    Article  Google Scholar 

  2. Y. Yang, G.Y. Huang, S.M. Xu, Y.H. He, and X. Liu, Hydrometallurgy 165, 390 (2016).

    Article  Google Scholar 

  3. Z. Li, J. Huang, B.Y. Liaw, V. Metzler, and J.B. Zhang, J. Power Sources 254, 168 (2014).

    Article  Google Scholar 

  4. J. Hu, J. Zhang, H. Li, Y. Chen, and C. Wang, J. Power Sources 351, 192 (2017).

    Article  Google Scholar 

  5. B. Scrosati, J. Hassoun, and Y.K. Sun, Energy Environ. Sci. 4, 3287 (2011).

    Article  Google Scholar 

  6. Y.H. Liu and T.L. Deng, World Sci. Technol. R&D 28, 69 (2006).

    Google Scholar 

  7. X.H. Liu, X.Y. Chen, Z.W. Zhao, and X.X. Liang, Hydrometallurgy 146, 24 (2014).

    Article  Google Scholar 

  8. M.P. Zheng and X.F. Liu, China Acta Geol. Sin. 84, 1585 (2010).

    Google Scholar 

  9. L.S. Cheng, P.D. Dong, Y.Z. Jia, and J. Yan, J. Mol. Liq. 200, 191 (2014).

    Article  Google Scholar 

  10. M. Maryam, H. Hengameh, A. Masoud, and N. Mohammad, Mater. Res. Bull. 61, 70 (2005).

    Google Scholar 

  11. A. Somrani, A.H. Hamzaoui, and M. Pontie, Desalination 317, 184 (2013).

    Article  Google Scholar 

  12. Z.W. Zhao, X.F. Si, X.H. Liu, L.H. He, and X.X. Liang, Hydrometallurgy 133, 75 (2013).

    Article  Google Scholar 

  13. W.A. Jeon, J.K. Dong, T.T. Khuyen, J.K. Myong, L. Tuti, and T. Tam, Hydrometallurgy 117–118, 64 (2012).

    Google Scholar 

  14. J. Li and X.B. **ong, Inorg. Chem. Ind. 42, 9 (2010).

    Google Scholar 

  15. P.X. Zhang, B.Z. Zhang, Y. Tang, C.D. Yang, S.Q. Huang, and J.Q. Wu, Saline Resources and its Development and Utilization in China (Bei**g: Science Press, 1999).

    Google Scholar 

  16. Y. Kenjirou, Japan Patent, 5717164.

  17. X.L. **ao, Z.F. Dai, Z.H. Zhu, and P.H. Ma, J. Salt Lake Res. 13, 66 (2005).

    Google Scholar 

  18. J.A. Epstein, E.M. Feist, J. Zmora, and Y. Marcus, Hydrometallurgy 6, 269 (1981).

    Article  Google Scholar 

  19. H.Z. Wang, D.Y.C. Leung, M.K.H. Leung, and M. Ni, Renew. Sustain. Energy Rev. 13, 845 (2009).

    Article  Google Scholar 

  20. X.Y. Chen, Z.W. Zhao, X.H. Liu, M.M. Hao, A.L. Chen, and Z.Y. Tang, J. Power Sources 254, 345 (2014).

    Article  Google Scholar 

  21. M.Q. Fan, F. Xu, L.X. Sun, J.N. Zhao, T.W. Jiang, and X. Li, J. Alloys Compd. 460, 125 (2008).

    Article  Google Scholar 

  22. A.V. Parmuzina and O.V. Kravchenko, Int. J. Hydrogen Energy 33, 3037 (2008).

    Article  Google Scholar 

  23. E. Czech and T. Troczynski, Int. J. Hydrogen Energy 35, 1029 (2010).

    Article  Google Scholar 

  24. B. Alinejad and K. Mahmoodi, Int. J. Hydrogen Energy 34, 7934 (2009).

    Article  Google Scholar 

  25. B. Sakintuna, F. Lamari-Darkrim, and M. Hirscher, Int. J. Hydrogen Energy 32, 1121 (2007).

    Article  Google Scholar 

  26. V.P. Isupov, N.P. Kotsupalo, A.P. Nemudry, and L.T. Menzeres, Stud. Surf. Sci. Catal. 120, 621 (1999).

    Article  Google Scholar 

  27. N.P. Neipert and C.L. Bon, US Patent, 3306700.

  28. R.D. Goodenough, US Patent, 29644381.

  29. C.V. Andiara, L.M. Roberto, and D. Anderson, J. Phys. Chem. C 113, 13358 (2009).

    Article  Google Scholar 

  30. D.X. Kang, X.M. Shen, and X.Y. Wan, J. Chem. Technol. Biotechnol. 31, 683 (1981).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Nature Science Foundation of China (U1407137), the Sheng Hua Yuying Program of CSU, and State Key Laboratory of Powder Metallurgy, Central South University. We thank LetPub (www.letpub.com) for linguistic assistance during preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **ngyu Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Chen, X., Liu, X. et al. Extraction of Lithium from Brine Solution by Hydrolysis of Activated Aluminum Powder. JOM 70, 1449–1453 (2018). https://doi.org/10.1007/s11837-018-2933-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-2933-x

Navigation