Log in

IDEAL: Images Across Domains, Experiments, Algorithms and Learning

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Research across science domains is increasingly reliant on image-centric data. Software tools are in high demand to uncover relevant, but hidden, information in digital images, such as those coming from faster next generation high-throughput imaging platforms. The challenge is to analyze the data torrent generated by the advanced instruments efficiently, and provide insights such as measurements for decision-making. In this paper, we overview work performed by an interdisciplinary team of computational and materials scientists, aimed at designing software applications and coordinating research efforts connecting (1) emerging algorithms for dealing with large and complex datasets; (2) data analysis methods with emphasis in pattern recognition and machine learning; and (3) advances in evolving computer architectures. Engineering tools around these efforts accelerate the analyses of image-based recordings, improve reusability and reproducibility, scale scientific procedures by reducing time between experiments, increase efficiency, and open opportunities for more users of the imaging facilities. This paper describes our algorithms and software tools, showing results across image scales, demonstrating how our framework plays a role in improving image understanding for quality control of existent materials and discovery of new compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. https://github.com/CameraIA/F3D.

References

  1. D. Martin, C. Fowlkes, D. Tal, and J. Malik, in Proceedings of IEEE International Conference on Computer Vision (2001), p. 416

  2. B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik, in Proceedings of IEEE ECCV– European Conference on Computer Vision (2014) p. 297

  3. K. Singha, S. Maity, M. Singha, and S. Pal, Front. Sci. 11 (2012)

  4. D. Ushizima, A. Bianchi, C. deBianchi, and W. Bethel, in ImageJ User and Developer Conference (2012)

  5. L. Martin, A. Tuysuzoglu, W.C. Karl, and P. Ishwar, IEEE Trans. Image Process. 24(11), 4069 (2015)

    Article  MathSciNet  Google Scholar 

  6. E.J. Tuegel, A.R. Ingraffea, T.G. Eason, and S. Spottswood, Int. J. Aerosp. Eng. 1, 5 (2011)

    Google Scholar 

  7. D. Ushizima, T. Perciano, H. Krishnan, B. Loring, H. Bale, D. Parkinson, and J. Sethian, in Proceedings of IEEE International Conference on Big Data (2014)

  8. A. Krizhevsky, I. Sutskever, and G.E. Hinton, Adv. Neural Inf. Process. Syst. 2, 1106 (2012)

    Google Scholar 

  9. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A.C. Berg, and L. Fei-Fei, Int. J. Comput. Vis. 115(3), 211 (2015)

    Article  MathSciNet  Google Scholar 

  10. M. Jordan, IEEE Spectr. 1109, (2014). http://spectrum.ieee.org/robotics/artificial-intelligence/machinelearning-maestro-michael-jordan-on-the-delusions-of-big-data-and-other-huge-engineering-efforts

  11. Argonne National Laboratory, TomoPy. https://tomopy.readthedocs.io/en/latest. Accessed 7 July 2016

  12. T. Bicer, D. Gürsoy, R. Kettimuthu, F. De Carlo, and I. Foster, J. Synchrotron Radiat. 23, 4 (2016)

    Article  Google Scholar 

  13. Argonne National Laboratory, Advanced photon source: an office of science national user facility. https://www1.aps.anl.gov/Science/Scientific-Software. Accessed 7 July 2016

  14. B.N. Cox, H.A. Bale, M. Blacklock, M.N.T. Fast, V. Rajan, R. Rinaldi, R.O. Ritchie, M. Rossol, J. Shaw, Q.D. Yang, F. Zok, and D.B. Marshall, Annu. Rev. Mater. Res. 44, 479 (2014)

    Article  Google Scholar 

  15. General Electric, Ceramic matrix composites improve engine efficiency. http://www.geglobalresearch.com/innovation/ 2016. Accessed 7 July 2016

  16. H.A. Bale, A. Haboub, A.A. Macdowell, J.R. Nasiatka, D.Y. Parkinson, B.N. Cox, and D.B. Marshall, Nat. Mater. 12, 40 (2012)

    Article  Google Scholar 

  17. R. Nock and F. Nielsen, IEEE Trans. Pattern Anal. Mach. Intell. 26, 1452 (2004)

    Article  Google Scholar 

  18. Fiji, Imagej. http://pacific.mpi-cbg.de/wiki/index.php/Fiji. Accessed 7 July 2016

  19. R.C. Gonzalez and R.E. Woods, Digital Image Processing, 3rd edn. (Prentice-Hall, 2006), p. 861

  20. R.O. Duda, P. Hart, and D.G. Stork, Pattern Classification (Wiley, New York, 2001)

    MATH  Google Scholar 

  21. A. Gajewicz, N. Schaeublin, B. Rasulev, E. Maurer, S. Hussain, T. Puzyn, and J. Leszczynski, Nanotoxicology 9, 313 (2014)

    Article  Google Scholar 

  22. A. Mikolajczyk, A. Gajewicz, B. Rasulev, N. Schaeublin, E. Maurer-Gardner, S. Hussain, J. Leszczynski, and T. Puzyn, Chem. Mater. 27, 2400 (2015)

    Article  Google Scholar 

  23. E. Burello and A.P. Worth, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 3(3), 298 (2011)

    Article  Google Scholar 

  24. K. Odziomek, D. Ushizima, M. Haranczyk, and T. Puzyn, in Proceedings of American Chemical Society (2014)

  25. A.W. Wills, D.J. Michalak, P. Ercius, E.R. Rosenberg, T. Perciano, D. Ushizima, R. Runser, and B.A. Helms, Adv. Funct. Mater., 1 (2015)

  26. D.M. Ushizima-Sabino, L. da Fontoura Costa, E.G., Rizzatti, and M.A. Zago, Real Time Imaging 10(4), 205 (2004)

    Article  Google Scholar 

  27. Y. Zhong, and A.K. Jain, Pattern Recogn. 33, 671 (2000)

    Article  Google Scholar 

  28. M. Knezevic, A. Levinson, R. Harris, R.K. Mishra, R.D. Doherty, and S.R. Kalidindi, Acta Mater. 58(19), 6230 (2010)

    Article  Google Scholar 

  29. T. Pietzsch, S. Saalfeld, S. Preibisch, and P. Tomancak, Nat. Methods 12, 6 (2015)

    Article  Google Scholar 

  30. D. Ushizima, T. Perciano, and D. Parkinson, in Proceedings of IEEE International Conference on Big Data (2014)

  31. T. Pietzsch, in BigDataViewer. http://fiji.sc/BigDataViewer. Accessed 7 July 2016

  32. I. Paula Jr., F. Medeiros, F. Bezerra, and D. Ushizima, J. Math. Imaging Vis. 45, 251 (2013)

    Article  MathSciNet  Google Scholar 

  33. F. Araujo, R. Silva, and D.M. Ushizima, in Proceedings of PyData San Francisco (2016)

  34. J. Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (Cambridge University Press, Cambridge, 1999)

    MATH  Google Scholar 

  35. T. Perciano, D. Ushizima, E.W. Bethel, Y.D. Mizhahi, and J.A. Sethian, in Proc.eedings of IEEE ICIP Conference (2016)

  36. D. Ushizima, A. Bianchi, and C. Carneiro, in Proceedings of IEEE ISBI Symposium (2014)

  37. Y.D. Mizrahi, M. Denil, and N. de Freitas, Proc. ICML 32, 1 (2014)

    Google Scholar 

  38. S.Z. Li, Markov Random Field Modeling in Image Analysis (Springer, London, 2009)

    MATH  Google Scholar 

  39. G.C. Leite, D.M. Ushizima, F.N.S. Medeiros, and G.G. de Lima, Sensors 10(6), 5994 (2010)

    Article  Google Scholar 

  40. D.M. Ushizima, D. Morozov, G.H. Weber, A.G. Bianchi, J.A. Sethian, and E.W. Bethel, IEEE. Trans, Vis. Comput. Gr. 18(12), 2041 (2012)

    Article  Google Scholar 

  41. M. Alegro, E. Amaro-Jr, B. Loring, H. Heinsen, E. Alho, L. Zollei, D. Ushizima, and L.T. Grinberg, in Proceedings of IEEE CVPR Conference (2016)

  42. T. Peterka, R. Ross, A. Gyulassy, V. Pascucci, W. Kendall, H.W. Shen, T.Y. Lee, and A. Chaudhuri, in Proceedings of IEEE LDAV Symposium (2011) p. 105

Download references

Acknowledgements

This work was supported by the Director, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences, of the US Department of Energy. Both the Early Career Research project and the Center for Applied Mathematics for Energy Related Applications (CAMERA) are under Contract No. DE-AC02- 05CH11231. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02- 05CH11231. We would like to thank Przemyslaw Oberbek, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland for preparing the SEM images. Also, the authors thank P. Nico and A. Wills for sharing samples of microCT of geological materials, and STEM of PMO, respectively. Additional thanks to B. Loring for supporting visualization schemes, and M. Alegro for participating on the development of multimodal registration methods.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela M. Ushizima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ushizima, D.M., Bale, H.A., Bethel, E.W. et al. IDEAL: Images Across Domains, Experiments, Algorithms and Learning. JOM 68, 2963–2972 (2016). https://doi.org/10.1007/s11837-016-2098-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-2098-4

Keywords

Navigation