Log in

Plastic-Derived Solid Acid Catalysts for the Production of Methyl 2-Hydroxyisobutyrate via Esterification

  • Original Article
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

In this study, we successfully prepare solid acid catalysts using plastic as the starting material for the production of methyl 2-hydroxyisobutyrate (HBM) through the esterification of 2-hydroxyisobutyric acid (HBA) and methanol. Polyethylene (PE) and polyvinyl chloride (PVC) are sulfonated at different temperatures (X) to obtain sulfonated polymer catalysts (SPE_X and SPVC_X). Various characterizations clearly confirm the introduction of sulfonic acid groups (–SO3H groups), which serve as active sites in this reaction, on the PE and PVC surfaces via sulfonation. For the SPVC_X catalysts, an excessively high sulfonation temperature facilitate the loss of chlorine groups (–Cl groups) via dehydrochlorination, resulting in a decrease in catalytic activity. In particular, the –Cl groups improve the acidic properties and accessibility of reactants to the –SO3H groups of the SPVC_X catalysts, leading to a high HBM yield. Therefore, the SPVC_120 catalyst show the highest HBM yield (ca. 75%) because of the abundant –SO3H and –Cl groups on the catalyst surface. Furthermore, the catalytic performance of the SPVC_120 catalyst surpassed those of commercial ion-exchange resins such as Amberlyst-15 and Nafion NR50, which are representative solid acid catalysts for esterification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Scheme 3
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available from the corresponding author on reasonable request.

References

  1. S. An, E. Bae, B. Choi, S. Jeon, D. Kim, K. Yoon, S. Park, J. Kim, S. Lee, K. Kim, Y. Yoon, KOR Patent, 100571721 (2006)

  2. B. Lee, W. Lee, S. Lee, KOR Patent, 101384810 (2014)

  3. H. Hirofumi, K. Koichi, EUR Patent, 0407811 (1966)

  4. R. Li, Z. Wei, H. Li, Z. Yin, Renew. Energy 201, 125 (2022)

    Article  CAS  Google Scholar 

  5. I.W. Ashworth, E. Bush, L.C. Chan, J. Cherryman, B.G. Cox, J. Muir, S.R. Korupoju, J. Keshwan, Org. Process Res. Dev. 16, 1646 (2012)

    Article  CAS  Google Scholar 

  6. M.F. Paiva, E.F. de Freitas, J.O.C. de França, D. da Silva-Valadares, S.C.L. Dias, J.A. Dias, Mol. Catal. 532, 112737 (2022)

    Article  CAS  Google Scholar 

  7. F. Dawaymeh, O. Elmutasim, D. Gaber, S. Gaber, K.S.K. Reddy, G. Basina, K. Polychronopoulou, Y.A. Wahedi, G.N. Karanikolos, Mol. Catal. 501, 111371 (2021)

    Article  CAS  Google Scholar 

  8. S. Wu, Y. Wang, H. Tao, Z. Yu, L. Wu, X. Meng, Y. Zhang, ChemistrySelect 8, 2204112 (2023)

    Google Scholar 

  9. A. Kumar, S.K. Singh, C. Sharma, RSC Adv. 13, 16712 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. S. Baco, M. Klinksiek, R.I.B. Zakaria, E.A. Garcia-Hernandez, M. Mignot, J. Legros, C. Held, V.C. Moreno, S. Leveneur, Chem. Eng. Sci. 260, 117928 (2022)

    Article  CAS  Google Scholar 

  11. F. Zhou, J. Cai, X. Mao, Z. Wu, Y. Nie, Korean J. Chem. Eng. 39, 2324 (2022)

    Article  CAS  Google Scholar 

  12. S. Kim, J. Yun, J. Cho, H. Choi, Y.S. Shin, H. Jeong, J.C. Jung, Mol. Catal. 532, 112721 (2022)

    Article  CAS  Google Scholar 

  13. D.R. Fernandes, A.S. Rocha, E.F. Mai, C.J. Mota, V.T. da Silva, Apple Catal. A: Gen. 425–426, 199 (2012)

    Article  Google Scholar 

  14. I. Shagufta, I. Ahmad, R. Dhar, Catal. Surv. Asia. Surv. Asia 21, 53 (2017)

    Article  CAS  Google Scholar 

  15. M.M.R. Talukder, J.C. Wu, S.K. Lau, L.C. Cui, G. Shimin, A. Lim, Energy Fuels 23, 1 (2009)

    Article  CAS  Google Scholar 

  16. M.A. Harmer, Q. Sun, Apple Catal. A Gen. 221, 45 (2001)

    Article  CAS  Google Scholar 

  17. Y.M. Park, S.H. Chung, H.J. Eom, J.S. Lee, K.Y. Lee, Bioresour. Technol.. Technol. 101, 6589 (2010)

    Article  CAS  Google Scholar 

  18. S. Shanmugam, B. Viswanathan, T.K. Varadarajan, J. Mol. Catal. A Chem. 223, 143 (2004)

    Article  CAS  Google Scholar 

  19. R.P. Rocha, M.F. Pereira, J.L. Figueiredo, Catal. Today. Today 218–219, 51 (2013)

    Article  Google Scholar 

  20. G.D. Yadav, M.S.M.M. Rahuman, Org. Process Res. Dev. 6, 706 (2002)

    Article  CAS  Google Scholar 

  21. T.A. Peters, N.E. Benes, A. Holmen, J.T. Keurentjes, Apple Catal. A Gen. 297, 182 (2006)

    Article  CAS  Google Scholar 

  22. T. Liu, Z. Li, W. Li, C. Shi, Y. Wang, Bioresour. Technol.. Technol. 133, 618 (2013)

    Article  CAS  Google Scholar 

  23. C.V. Grossi, E. de Oliveira Jardim, M.H. de Araújo, R.M. Lago, M.J. da Silva, Fuel 89, 257 (2010)

    Article  Google Scholar 

  24. W.T. Liu, C.S. Tan, Ind. Eng. Chem. Res. 40, 3281 (2001)

    Article  CAS  Google Scholar 

  25. M.G. Kulkarni, R. Gopinath, L.C. Meher, A.K. Dalai, Green Chem. 8, 1056 (2006)

    Article  CAS  Google Scholar 

  26. K. Fukuhara, K. Nakajima, M. Kitano, H. Kato, S. Hayashi, M. Hara, Chemsuschem 4, 778 (2011)

    Article  CAS  PubMed  Google Scholar 

  27. L.J. Konwar, P. Mäki-Arvela, J.P. Mikkola, Chem. Rev. 119, 11576 (2019)

    Article  CAS  PubMed  Google Scholar 

  28. X. Tian, L.L. Zhang, P. Bai, X.S. Zhao, Catal. Today. Today 166, 53 (2011)

    Article  CAS  Google Scholar 

  29. K. Nakajima, M. Hara, ACS Catal.Catal. 2, 1296 (2012)

    Article  CAS  Google Scholar 

  30. J.L. Penariol, T.R. Theodoro, J.R. Dias, J.A. Carpegiani, L.G. Aguiar, Kinet. Catal.Catal. 650–653, 60 (2019)

    Google Scholar 

  31. N. Pal, J. Lee, E. Cho, Nanomaterials 10, 2122 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. R. Farouq, Y. Selim, J. Polym. Environ.Polym. Environ. 2285–2293, 31 (2023)

    Google Scholar 

  33. N. Saxena, N. Pal, K. Ojha, S. Dey, A. Mandal, RSC Adv. 8, 24485 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. S. Ghatge, Y. Yang, Y. Ko, Y. Yoon, J.H. Ahn, J.J. Kim, H.G. Hur, J. Hazard. Mater. 423, 127067 (2022)

    Article  CAS  PubMed  Google Scholar 

  35. R. Kazimi, T. Shah, S. Shima Binti Jamari, I. Ahmed, C. Ku Mohammad Faizal, Polym. Eng. Sci.. Eng. Sci. 54, 2522 (2014)

    Article  CAS  Google Scholar 

  36. A. Marcilla, M.I. Beltrán, R. Navarro, J. Anal. Appl. Pyrolysis 76, 222 (2006)

    Article  CAS  Google Scholar 

  37. H. Rajandas, S. Parimannan, K. Sathasivam, M. Ravichandran, L.S. Yin, Polym. Test.. Test. 31, 1094 (2012)

    Article  CAS  Google Scholar 

  38. J.V. Gulmine, P.R. Janissek, H.M. Heise, L. Akcelrud, Polym. Test.. Test. 21, 557 (2002)

    Article  CAS  Google Scholar 

  39. S. Ramesh, K.H. Leen, K. Kumutha, A.K. Arof, Spectrochim. Acta A Mol. Biomol. Spectrosc. 66, 1237 (2007)

    Article  CAS  PubMed  Google Scholar 

  40. N.S. Alghunaim, Results Phys. 5, 331 (2015)

    Article  Google Scholar 

  41. E.J. Park, B.C. Park, Y.J. Kim, A. Canlier, T.S. Hwang, Macromol. Res.. Res. 26, 913 (2018)

    Article  CAS  Google Scholar 

  42. J. Wolska, J. Walkowiak-Kulikowska, Eur. Polym. J.Polym. J. 129, 109635 (2020)

    Article  CAS  Google Scholar 

  43. M. Kaneko, S. Kumagai, T. Nakamura, H. Sato, J. Appl. Polym. Sci.Polym. Sci. 91, 2435 (2004)

    Article  CAS  Google Scholar 

  44. N. De Geyter, R. Morent, C. Leys, Surf. Interface Anal. 40, 608 (2008)

    Article  Google Scholar 

  45. A. Fahmy, M.A. Kolmangadi, A. Schönhals, J. Friedrich, Plasma Process. Polym.Polym. 19, 2100222 (2022)

    Article  CAS  Google Scholar 

  46. M. Edraki, M. Sheydaei, E. Alinia-Ahandani, E. Nezhadghaffar-Borhani, J. Sulfur Chem.Sulfur Chem. 42, 397 (2021)

    Article  CAS  Google Scholar 

  47. F.R. Riu, X. Yu, Y. Qi, J. Clean. Prod. 260, 121085 (2020)

    Article  Google Scholar 

  48. H. Pan, S. Shen, T. Li, X. Wen, X. Ma, Z. Zhou, J. Li, C. Wang, B. Wu, S. **g, Mol. Catal. 492, 111015 (2020)

    Article  CAS  Google Scholar 

  49. S. Yuan, T. Li, Y. Wang, B. Cai, X. Wen, S. Shen, X. Peng, Y. Li, Fuel 237, 895 (2019)

    Article  CAS  Google Scholar 

  50. G.M. Wu, S.J. Lin, C.C. Yang, J. Membr. Sci.Membr. Sci. 284, 120 (2006)

    Article  CAS  Google Scholar 

  51. B. **e, L. Hong, P. Chen, B. Zhu, Polym. Bull.. Bull. 73, 891 (2016)

    Article  CAS  Google Scholar 

  52. C. Li, H. Zhu, N.V. Salim, B.L. Fox, N. Hameed, Polym. Degrad. Stab.. Degrad. Stab. 134, 272 (2016)

    Article  CAS  Google Scholar 

  53. S. Villagómez-Salas, P. Manikandan, S.F. Acuna-Guzman, V.G. Pol, ACS Omega 3, 17520 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  54. J.M. Younker, T. Saito, M.A. Hunt, A.K. Naskar, A. Beste, J. Am. Chem. Soc. 135, 6130 (2013)

    Article  CAS  PubMed  Google Scholar 

  55. J.T. Allan, L.E. Prest, E.B. Easton, J. Membr. Sci.Membr. Sci. 489, 175 (2015)

    Article  CAS  Google Scholar 

  56. I. Karacan, H. Benli, J. Appl. Polym. Sci.Polym. Sci. 123, 234 (2012)

    Article  CAS  Google Scholar 

  57. M.C.G. Souza, A.C.F. Batista, R.F. Cuevas, W.J.F. da Silva Filho, M.A.G. Balanta, A. Champi, R.M.N. de Assunção, Bioresour. Technol. Rep. 19, 101193 (2022)

    Article  CAS  Google Scholar 

  58. H.D. Asfaw, R. Younesi, M. Valvo, J. Maibach, J. Ångström, C.W. Tai, C. Tai, Z. Bacsik, M. Sahlberg, L. Nyholm, K. Edström, ChemistrySelect 4, 784 (2016)

    Article  Google Scholar 

  59. A. Asadinezhad, M. Lehocký, P. Sáha, M. Mozetič, Materials 5, 2937 (2012)

    Article  CAS  PubMed Central  Google Scholar 

  60. S.K. Kim, Y.S. Lee, K.K. Koo, S.H. Kim, S.H. Choi, J. Nanosci. Nanotechnol.Nanosci. Nanotechnol. 15, 6942 (2015)

    Article  CAS  Google Scholar 

  61. T.A. Nguyen, S. Ichise, K. Kinashi, W. Sakai, N. Tsutsumi, S. Okubayashi, Polym. Degrad. Stab.. Degrad. Stab. 197, 109871 (2022)

    Article  CAS  Google Scholar 

  62. H.M.A. Ali, C.V. Silva, B. Royer, G. Rodrigues Filho, D.A. Cerqueira, R.M. Assunção, Materials 10, 1298 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  63. D.E. Winkler, J. Polym. Sci.Polym. Sci. 35, 3 (1959)

    CAS  Google Scholar 

  64. Y.T. Pan, Y. Yuan, D.Y. Wang, R. Yang, Chin. J. Chem. 38, 1870 (2020)

    Article  CAS  Google Scholar 

  65. H. Zuoyun, H. **ngzhou, S. Gang, Polym. Degrad. Stab.. Degrad. Stab. 24, 127 (1989)

    Article  Google Scholar 

  66. G.F. Lisk, Ind. Eng. Chem. 42, 1746 (1950)

    Article  CAS  Google Scholar 

  67. A.P. Koskin, Y.V. Larichev, I.V. Mishakov, M.S. Mel’gunov, A.A. Vedyagin, Microporous Mesoporous Mater. 299, 110130 (2020)

    Article  CAS  Google Scholar 

  68. L. Xu, H.K. Lee, J. Chromatogr. AChromatogr. A 1216, 6549 (2009)

    Article  CAS  Google Scholar 

  69. Q. Pang, L. Wang, H. Yang, L. Jia, X. Pan, C. Qiu, RSC Adv. 4, 41212 (2014)

    Article  CAS  Google Scholar 

  70. L. Hu, Z. Li, Z. Wu, L. Lin, S. Zhou, Ind. Crops Prod. 84, 408 (2016)

    Article  CAS  Google Scholar 

  71. S. Shen, B. Cai, C. Wang, H. Li, G. Dai, H. Qin, Apple Catal. A Gen. 473, 70 (2014)

    Article  CAS  Google Scholar 

  72. J. Wolska, K. Stawicka, J. Walkowiak-Kulikowska, Mater. Chem. Phys. 273, 125132 (2021)

    Article  CAS  Google Scholar 

  73. L. Zhou, T.H. Nguyen, A.A. Adesina, Fuel Process. Technol. 104, 310 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by 2023 Research Fund of Myongji University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wonjong Jung or Ji Chul Jung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, J., Kim, S., Jung, W. et al. Plastic-Derived Solid Acid Catalysts for the Production of Methyl 2-Hydroxyisobutyrate via Esterification. Korean J. Chem. Eng. 41, 2297–2306 (2024). https://doi.org/10.1007/s11814-024-00154-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-024-00154-w

Keywords

Navigation