Log in

Hydrogen production by catalytic steam reforming of waste cooking oil over La-Ni/ZSM-5 catalyst

  • Energy
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Ni/ZSM-5 catalyst is one of the promising catalysts to improve the catalytic steam reforming of waste cooking oil (WCO) for hydrogen production. Furthermore, the introduction of lanthanum (La) plays a huge role in inhibiting metal sintering and carbon deposition and improving the stability and activity of the catalyst. This study investigated the effects of reaction temperature (600–800 °C), steam to carbon molar ratio (S/C), n Ni/ZSM-5 (n=5, 10, and 15 wt%), and the addition of promoter (La) on the experimentally generated hydrogen yield and carbon deposition. Results showed that the experiment used 6 wt% La-10 wt% Ni/ZSM-5 at 0.1 MPa, 700 °C, space-time (τ)=0.56 gcatalyst/gWCO, and S/C=5.25, which obtained the yield of H2 was 154.12 mol/kg, carbon deposition was 5.38%. Therefore, Ni-modified catalyst added La to improve the catalyst coking resistance and prevent carbon formation. Moreover, La can further promote the dispersion of nickel on the surface of the carrier and improve the catalytic performance of the catalyst for steam reforming reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Dupain, D. J. Costa, C. J. Schaverien, M. Makkee and J. A. Moulijn, Appl. Catal. B: Environ., 72, 44 (2007).

    Article  CAS  Google Scholar 

  2. S. Nanda, R. Rana, H. N. Hunter, Z. Fang, A. K. Dalai and J. A. Kozinski, Chem. Eng. Sci., 195, 935 (2019).

    Article  CAS  Google Scholar 

  3. G. M. Allen, Dover Publications, Mineola, N.Y (2004).

  4. C. Rioche, S. Kulkarni, F. C. Meunier, J. P. Breen and R. Burch, Appl. Catal. B: Environ., 61, 130 (2005).

    Article  CAS  Google Scholar 

  5. P. Fu, W Yi, Z. Li, X. Bai, A. Zhang, Y Li and Z. Li, Int. J. Hydrogen Energy, 39, 13962 (2014).

    Article  CAS  Google Scholar 

  6. H. **e, Q. Yu, X. Yao, W Duan, Z. Zuo and Q. Qin, J. Energy Chem., 24, 299 (2015).

    Article  Google Scholar 

  7. H. D. Setiabudi, M. A. A. Aziz, S. Abdullah, L. P. Teh and R. Jusoh, Int. J. Hydrogen Energy, 45, 18376 (2020).

    Article  CAS  Google Scholar 

  8. C. G. Vayenas, J. Catal., 134, 755 (1992).

    Article  Google Scholar 

  9. I. N. Buffoni, F. Pompeo, G. F. Santori and N. N. Nichio, Catal. Commun., 10, 1656 (2009).

    Article  CAS  Google Scholar 

  10. N. Goyal, K. K. Pant and R. Gupta, Int. J. Hydrogen Energy, 38, 921 (2013).

    Article  CAS  Google Scholar 

  11. J. Chen, J. Sun and Y. Wang, Ind. Eng. Chem. Res., 56, 4627 (2017).

    Article  CAS  Google Scholar 

  12. B. Yan, W Li, J. Tao, N. Xu, X. Li and G. Chen, Int. J. Hydrogen Energy, 42, 6674 (2017).

    Article  CAS  Google Scholar 

  13. A. Awadallah, A. Aboul-Enein and A. Aboul-Gheit, Renew. Energy, 57, 671 (2013).

    Article  CAS  Google Scholar 

  14. N. Gutta, V. K. Velisoju, A. Chatla, V. Boosa, J. Tardio, J. Patel and V. Akula, Energy Fuels, 32, 4008 (2018).

    Article  CAS  Google Scholar 

  15. X. Zhao, K. Wu, W Liao, Y. Wang, X. Hou, M. **, Z. Suo and H. Ge, Green Energy Environ., 4, 300 (2019).

    Article  Google Scholar 

  16. S. Zhou, Z. Chen, H. Gong, X. Wang, T. Zhu and Y. Zhou, Appl. Catal. A: Gen., 607, 117859 (2020).

    Article  CAS  Google Scholar 

  17. R. S. Tan, T. A. Tuan Abdullah, A. Ripin, A. Ahmad and K. Md Isa, J. Environ. Chem. Eng., 7, 103490 (2019).

    Article  CAS  Google Scholar 

  18. X. Li, D. Li, H. Tian, L. Zeng, Z.-J. Zhao and J. Gong, Appl. Catal. B: Environ., 202, 683 (2017).

    Article  CAS  Google Scholar 

  19. S. Adamu, H. Binous, S. A. Razzak and M. M. Hossain, Renew. Energy, 111, 399 (2017).

    Article  CAS  Google Scholar 

  20. M. B. I. Chowdhury, M. Z. Hossain, J. Mazumder, A. K. Jhawar and P. A. Charpentier, Fuel, 217, 166 (2018).

    Article  CAS  Google Scholar 

  21. M. Boudjeloud, A. Boulahouache, C. Rabia and N. Salhi, Int. J. Hydrogen Energy, 44, 9906 (2019).

    Article  CAS  Google Scholar 

  22. H. Lu, X. Yang, G. Gao, J. Wang, C. Han, X. Liang, C. Li, Y. Li, W. Zhang and X. Chen, Fuel, 183, 335 (2016).

    Article  CAS  Google Scholar 

  23. A.A. Abdulrasheed, A.A. Jalil, M.Y.S. Hamid, T.J. Siang and T.A.T. Abdullah, J. CO2Util., 37, 230 (2020).

    Article  CAS  Google Scholar 

  24. P. Osorio-Vargas, N. A. Flores-Gonzalez, R. M. Navarro, J. L. G. Fierro, C. H. Campos and P. Reyes, Catal. Today, 259, 27 (2016).

    Article  CAS  Google Scholar 

  25. E. Kok, J. Scott, N. Cant and D. Trimm, Catal. Today, 164, 297 (2011).

    Article  CAS  Google Scholar 

  26. M. Chen, X. Li, Y. Wang, C. Wang, T. Liang, H. Zhang, Z. Yang, Z. Zhou and J. Wang, Energy Conv. Manage., 184, 315 (2019).

    Article  CAS  Google Scholar 

  27. Z. Li, Z. Zhong, B. Zhang, W Wang and W Wu, J. Anal. Appl. Pyrolysis, 138, 103 (2019).

    Article  CAS  Google Scholar 

  28. Y. Li, Nishu, D. Yellezuome, M. Chai, C. Li and R. Liu, J. Energy Inst., 99, 218 (2021).

    Article  CAS  Google Scholar 

  29. Y. Wang, C. Wang, M. Chen, J. Hu, Z. Tang, D. Liang, W. Cheng, Z. Yang, J. Wang and H. Zhang, Fuel, 279, 118449 (2020).

    Article  CAS  Google Scholar 

  30. M. Chen, D. Liang, Y. Wang, C. Wang, Z. Tang, C. Li, J. Hu, W. Cheng, Z. Yang, H. Zhang and J. Wang, Int. J. Hydrogen Energy, 46, 21796 (2021).

    Article  CAS  Google Scholar 

  31. Nishu, C. Li, M. Chai, M. M. Rahman, Y. Li, M. Sarker and R. Liu, Renew. Energy, 175, 936 (2021).

    Article  CAS  Google Scholar 

  32. S. S. Vieira, Z. M. Magriotis, I. Graça, A. Fernandes, M. F. Ribeiro, J. M. F. M. Lopes, S. M. Coelho, N. A. V. Santos and A. A. Saczk, Catal. Today, 279, 267 (2017).

    Article  CAS  Google Scholar 

  33. R. Yang, C. **ng, C. Lv, L. Shi and N. Tsubaki, Appl. Catal.s A: Gen., 385, 92 (2010).

    Article  Google Scholar 

  34. H. Su, E. Kanchanatip, D. Wang, H. Zhang, Antoni, I. Mubeen, Z. Huang and M. Yan, Int. J. Hydrogen Energy, 45, 553 (2020).

    Article  CAS  Google Scholar 

  35. H. Lorenz, S. Turner, O. I. Lebedev, G. Van Tendeloo, B. Klötzer, C. Rameshan, K. Pfaller and S. Penner, Appl. Catal. A: Gen., 374, 180 (2010).

    Article  CAS  Google Scholar 

  36. Z. Li, X. Yang, Y. Han and L. Rong, Int. J. Hydrogen Energy, 45, 21364 (2020).

    Article  CAS  Google Scholar 

  37. L. N. Jun, M. B. Bahari, H. D. Setiabudi, A. A. Jalil and D.-V. N. Vo, Process Saf. Environ. Prot., 150, 356 (2021).

    Article  CAS  Google Scholar 

  38. T. Pan, S. Ge, M. Yu, Y. Ju, R. Zhang, P. Wu, K. Zhou and Z. Wu, Fuel, 311, 122629 (2022).

    Article  CAS  Google Scholar 

  39. Y. Zheng, F. Wang, X. Yang, Y. Huang, C. Liu, Z. Zheng and J. Gu, J. Anal. Appl. Pyrolysis, 126, 169 (2017).

    Article  CAS  Google Scholar 

  40. J. Zhang, M. Ren, X. Li, Q. Hao, H. Chen and X. Ma, Energy Conv. Manage., 205, 112419 (2020).

    Article  CAS  Google Scholar 

  41. S. S. Miri, F. Meshkani, A. Rastegarpanah and M. Rezaei, Chem. Eng. Sci., 250, 116956 (2022).

    Article  CAS  Google Scholar 

  42. T. A. Le, Q. C. Do, Y. Kim, T.-W. Kim and H.-J. Chae, Korean J. Chem. Eng., 38, 1087 (2021).

    Article  CAS  Google Scholar 

  43. Z. Hao, Q. Zhu, Z. Jiang, B. Hou and H. Li, Fuel Process. Technol., 90, 113 (2009).

    Article  CAS  Google Scholar 

  44. A. Kostyniuk, D. Bajec and B. Likozar, Renew. Energy, 167, 409 (2021).

    Article  CAS  Google Scholar 

  45. P. Feng, K. Huang, Q. Xu, W. Qi, S. **n, T. Wei, L. Liao and Y. Yan, Int. J. Hydrogen Energy, 45, 8223 (2020).

    Article  CAS  Google Scholar 

  46. L. Chen, H. Li, J. Fu, C. Miao, P. Lv and Z. Yuan, Catal. Today, 259, 266 (2016).

    Article  CAS  Google Scholar 

  47. S. Pinjari, M. K. Kumaravelan, V. C. Peddy, S. Gandham, J. Patruni, S. Velluru and P. Kumar, Int. J. Hydrogen Energy, 43, 2781 (2018).

    Article  CAS  Google Scholar 

  48. R. Tian, S.-y. Wang, C.-s. Lian, X. Wu, X. An and X.-m. **e, J. Fuel Chem. Technol, 47, 1476 (2019).

    Article  CAS  Google Scholar 

  49. Z. Niazi, A. Irankhah, Y. Wang and H. Arandiyan, Int. J. Hydrogen Energy, 45, 21512 (2020).

    Article  CAS  Google Scholar 

  50. Y. Sugi, Y. Kubota, K. Komura, N. Sugiyama, M. Hayashi, J. H. Kim and G. Seo, Appl. Catal. A: Gen., 299, 157 (2006).

    Article  CAS  Google Scholar 

  51. K. Ding, A. He, D. Zhong, L. Fan, S. Liu, Y. Wang, Y. Liu, P. Chen, H. Lei and R. Ruan, Bioresour. Technol., 268, 1 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. M. Li, S. **ng, L. Yang, J. Fu, P. Lv, Z. Wang and Z. Yuan, Appl. Catal. A: Gen, 587, 117112 (2019).

    Article  CAS  Google Scholar 

  53. X. Zhang, H. Lei, G. Yadavalli, L. Zhu, Y. Wei and Y. Liu, Fuel, 144, 33 (2015).

    Article  Google Scholar 

  54. X. Li, B. Li, J. Xu, Q. Wang, X. Pang, X. Gao, Z. Zhou and J. Piao, Appl. Clay Sci., 50, 81 (2010).

    Article  CAS  Google Scholar 

  55. L. Fan, R. Ruan, J. Li, L. Ma, C. Wang and W. Zhou, Appl. Energy, 263, 114629 (2020).

    Article  CAS  Google Scholar 

  56. F. Li, S. Ding, Z. Wang, Z. Li, L. Li, C. Gao, Z. Zhong, H. Lin and C. Chen, Energy Fuels, 32, 5910 (2018).

    Article  CAS  Google Scholar 

  57. J. Xu and G. F. Froment, AIChE J, 35, 88 (1989).

    Article  CAS  Google Scholar 

  58. N. Kaisalo, P. Simell and J. Lehtonen, Fuel, 182, 696 (2016).

    Article  CAS  Google Scholar 

  59. M. Koike, D. Li, H. Watanabe, Y. Nakagawa and K. Tomishige, Appl. Catal. A: Gen., 506, 151 (2015).

    Article  CAS  Google Scholar 

  60. S. C. Srivatsa, F. Li and S. Bhattacharya, Renew. Energy, 142, 426 (2019).

    Article  CAS  Google Scholar 

  61. G.-Q. Wei, W-N. Zhao, J.-G. Meng, J. Feng, W-Y. Li, F. He, Z. Huang, Q. Yi, Z.-Y. Du, K. Zhao, Z.-L. Zhao and H.-B. Li, J. Clean. Prod., 200, 588 (2018).

    Article  CAS  Google Scholar 

  62. L. Qian, Z. Ma, Y. Ren, H. Shi, B. Yue, S. Feng, J. Shen and S. **e, Fuel, 122, 47 (2014).

    Article  CAS  Google Scholar 

  63. H. Su, E. Kanchanatip, D. Wang, H. Zhang, Antoni, I. Mubeen, Z. Huang and M. Yan, Int. J. Hydrogen Energy, 45, 553 (2020).

    Article  CAS  Google Scholar 

  64. W Liu and H. Yuan, Int. J. Energy Res, 44, 11564 (2020).

    Article  CAS  Google Scholar 

  65. F. Fayaz, B. Long Giang, M. B. Bahari, N. Trinh Duy, B.V. Khanh, R. Kanthasamy, C. Samart, N.-H. Chinh and D.-V. N. Vo, Int. J. Energy Res, 43, 405 (2019).

    Article  CAS  Google Scholar 

  66. K.-H. Lin, C.-B. Wang and S.-H. Chien, Int. J. Hydrogen Energy, 38, 3226 (2013).

    Article  CAS  Google Scholar 

  67. K. W. Siew, H. C. Lee, J. Gimbun and C. K. Cheng, Int. J. Hydrogen Energy, 39, 6927 (2014).

    Article  CAS  Google Scholar 

  68. L. N. Jun, M. B. Bahari, H. D. Setiabudi, A. A. Jalil and D.-V. N. Vo, Process Saf. Environ. Prot., 150, 356 (2021).

    Article  CAS  Google Scholar 

  69. T. Bai, X. Zhang, F. Wang, W. Qu, X. Liu and C. Duan, J. Energy Chem., 25, 545 (2016).

    Article  Google Scholar 

  70. Y. Ni, A. Sun, X. Wu, G. Hai, J. Hu, T. Li and G. Li, J. Colloid Interface Sci., 361, 521 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors express their great appreciation for the financial support of this project by the National Natural Science Foundation of China (51676081), Wuhan Enterprise Technology Innovation Projects (2019020702011359; 2020020602012150), and the 111 Project B17019. Additionally, the authors would like to thank the Shiyanjia Lab (https://www.shiyanjia.com) for the support of SEM and NH3-TPD tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengshun Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**ao, N., Zhao, R., Liu, Y. et al. Hydrogen production by catalytic steam reforming of waste cooking oil over La-Ni/ZSM-5 catalyst. Korean J. Chem. Eng. 40, 2174–2186 (2023). https://doi.org/10.1007/s11814-023-1459-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-023-1459-2

Keywords

Navigation