Log in

Biohydrogen production from glycerol by novel Clostridium sp. SH25 and its application to biohydrogen car operation

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Biohydrogen is a clean and efficient source of energy produced easily by anaerobic systems. Therefore, the discovery of novel and efficient production methods and utilization of inexpensive starting material are crucial for economical biohydrogen production. In this study, novel hydrogen producing bacterial strain Clostridium sp. SH25 was screened from the anaerobic sludge obtained from a water treatment plant, which showed a higher hydrogen-producing activity on glycerol than other strains. The effective hydrogen production was evaluated under varying anaerobic culture conditions, and the optimum temperature, initial pH, additional NaCl concentration, and inoculum size were 37 °C, 6.0, 0%, and 10% (v/v), respectively. The cumulative hydrogen production volume from crude glycerol was 24.30±1.07 ml after 36 h. To test the practical application of biohydrogen, a 20 ml culture of Clostridium sp. SH25 was incubated for 12 h and directly applied to a small hydrogen car unit operated for 19.05±0.33 s with 8.37 ± 0.21 m displacement. Overall, identification of the efficient Clostridium sp. SH25 strain resulted in the production of a large amount of biohydrogen, which further supported the operation of a small hydrogen car. This implied a possible application of biosystems in biohydrogen production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Urry, Theory, Cult. Soc., 31, 3 (2014).

    Article  Google Scholar 

  2. R. J. Andres, T. A. Boden, F. M. Bréon, P. Ciais, S. Davis, D. Erickson, J. S. Gregg, A. Jacobson, G. Marland, J. Miller, T. Oda, J. G. J. Olivier, M. R. Raupach, P. Rayner and K. Treanton, Biogeosciences, 9, 1845 (2012).

    Article  CAS  Google Scholar 

  3. S. F. Lincoln, Ambio, 34, 621 (2016).

    Article  Google Scholar 

  4. H. S. Song, H. M. Seo, J. M. Jeon, Y. M. Moon, J. W. Hong, Y. G. Hong, S. K. Bhatia, J. Ahn, H. Lee, W. Kim, Y. C. Park, K. Y. Choi, Y. G. Kim and Y. H. Yang, Biotechnol. Bioeng., 115, 1971 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. N. Sarkar, S. K. Ghosh, S. Bannerjee and K. Aikat, Renew. Energy, 37, 19 (2012).

    Article  CAS  Google Scholar 

  6. J. Chi and H. Yu, Chin. J. Catal., 39, 390 (2018).

    Article  CAS  Google Scholar 

  7. V. Singh, S. Yadav, R. Sen and D. Das, Int. J. Hydrogen Energy, 45, 24477 (2020).

    Article  CAS  Google Scholar 

  8. D. Das and T. N. Veziroglu, Int. J. Hydrogen Energy, 33, 6046 (2008).

    Article  CAS  Google Scholar 

  9. P. Nikolaidis and A. Poullikkas, Renew. Sustain. Energy Rev., 67, 597 (2017).

    Article  CAS  Google Scholar 

  10. S. K. Bhatia, S. S. Jagtap, A. A. Bedekar, R. K. Bhatia, K. Rajendran, A. Pugazhendhi, C. V. Rao, A. E. Atabani, G. Kumar and Y. H. Yang, Sci. Total Environ., 765, 144429 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. I. Dincer and C. Acar, Int. J. Hydrogen Energy, 40, 11094 (2014).

    Article  CAS  Google Scholar 

  12. J. Wang and Y. Yin, Renew. Sustain. Energy Rev., 92, 284 (2018).

    Article  CAS  Google Scholar 

  13. E. S. Shuba and D. Kifle, Renew. Sustain. Energy Rev., 81, 743 (2018).

    Article  CAS  Google Scholar 

  14. A. Sharma and S. K. Arya, Biotechnol. Rep., 15, 63 (2017).

    Article  Google Scholar 

  15. M. A. Khan, H. H. Ngo, W. S. Guo, Y. Liu, L. D. Nghiem, F. I. Hai, L. J. Deng, J. Wang and Y. Wu, Bioresour. Technol., 219, 738 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. P. Sinha and A. Pandey, Int. J. Hydrogen Energy, 39, 7518 (2014).

    Article  CAS  Google Scholar 

  17. N. Asadi and H. Zilouei, Bioresour. Technol., 227, 335 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. C. H. Hung, Y. T. Chang and Y. J. Chang, Bioresour. Technol., 102, 8437 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. F. Taguchi, J. Dan Chang, N. Mizukami, T. Saito-taki, K. Hasegawa and M. Morimoto, Canadian J. Microbiol., 39, 7 (1993).

    Article  Google Scholar 

  20. I. C. Liu, L. M. Whang, W. J. Ren and P. Y. Lin, Int. J. Hydrogen Energy, 36, 439 (2011).

    Article  CAS  Google Scholar 

  21. W. M. Chen, Z. J. Tseng, K. S. Lee and J. S. Chang, Int. J. Hydrogen Energy, 30, 1063 (2011).

    Article  CAS  Google Scholar 

  22. F. M. S. Silva, L. B. Oliveira, C. F. Mahler and J. P. Bassin, Int. J. Hydrogen Energy, 42, 22720 (2017).

    Article  CAS  Google Scholar 

  23. S. J. Sarma, S. K. Brar, Y. Le Bihan, G. Buelna and C. R. Soccol, J. Chem. Technol. Biotechnol., 88, 2264 (2013).

    Article  CAS  Google Scholar 

  24. A. G. Olabi, M. Mahmoud, B. Soudan, T. Wilberforce and M. Ramadan, Renew. Energy, 147, 2003 (2020).

    Article  Google Scholar 

  25. J. S. Riti and Y. Shu, Energy Sustain. Soc., 6 (2016).

  26. I. M. Atadashi, M. K. Aroua and A. A. Aziz, Renew. Energy, 36, 437 (2011).

    Article  CAS  Google Scholar 

  27. S. K. Bhatia, H. S. Joo and Y. H. Yang, Energy Convers. Manag., 177, 640 (2018).

    Article  CAS  Google Scholar 

  28. D. Samul, K. Leja and W. Grajek, Ann. Microbiol., 64, 891 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. F. Barbirato, H. Himmi, T. Conte and A. Bories, Ind. Crops Prod., 7, 281 (1998).

    Article  CAS  Google Scholar 

  30. Y. Dharmadi, A. Murarka and R. Gonzalez, Biotechnol. Bioeng., 94, 821 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. T. Colin, A. Bories, C. Lavigne and G. Moulin, Curr. Microbiol., 43, 238 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. K. Petrov and P. Petrova, Appl. Microbiol. Biotechnol., 84, 659 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. T. Chookaew, S. O-Thong and P. Prasertsan, Int. J. Hydrogen Energy, 39, 9580 (2014).

    Article  CAS  Google Scholar 

  34. W. J. Choi, M. R. Hartono, W. H. Chan and S. S. Yeo, Appl. Microbiol. Biotechnol., 89, 1255 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. S. Sattayasamitsathit, P. Methacanon and P. Prasertsan, Electron. J. Biotechnol., 14, 6 (2011).

    CAS  Google Scholar 

  36. Y. L. Park, S. K. Bhatia, R. Gurav, T. R. Choi, H. J. Kim, H. S. Song, J. Y. Park, Y. H. Han, S. M. Lee, S. L. Park, H. S. Lee, Y. G. Kim and Y. H. Yang, Int. J. Biol. Macromol., 154, 929 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. S. L. Park, J. Y. Cho, T. R. Choi, H. S. Song, S. K. Bhatia, R. Gurav, S. H. Park, K. Park, J. C. Joo, S. Y. Hwang and Y. H. Yang, Int. J. Biol. Macromol., 177, 413 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Y. L. Park, T. R. Choi, Y. H. Han, H. S. Song, J. Y. Park, S. K. Bhatia, R. Gurav, K.Y. Choi, Y.G. Kim and Y.H. Yang, J. Biotechnol., 322, 21 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Y. Yin and J. Wang, Int. J. Hydrogen Energy, 42, 12173 (2017).

    Article  CAS  Google Scholar 

  40. T. R. Choi, J. M. Jeon, S. K. Bhatia, R. Gurav, Y. H. Han, Y. L. Park, J. Y. Park, H. S. Song, H. Y. Park, J. J. Yoon, S. O. Seo and Y. H. Yang, Bioprocess Eng., 25, 279 (2020).

    Article  CAS  Google Scholar 

  41. J. M. Jeon, H. Park, H. M. Seo, J. H. Kim, S. K. Bhatia, G. Sathiyanarayanan, H. S. Song, S. H. Park, K. Y. Choi, B. I. Sang and Y. H. Yang, Bioprocess Biosyst. Eng., 38, 2147 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. B. **ao and J. Liu, J. Hazard. Mater., 168, 163 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. S. M. Kotay and D. Das, Bioresour. Technol., 98, 1183 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. H. H. P. Fang, T. Zhang and H. Liu, Appl. Microbiol. Biotechnol., 58, 112 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. E. Colleran, F. Concannon, T. Golden, F. Geoghegan, B. Crumlish, E. Killilea, M. Henry and J. Coates, Water Sci. Technol., 25, 31 (1992).

    Article  CAS  Google Scholar 

  46. M. C. Nelson, M. Morrison and Z. Yu, Bioresour. Technol., 102, 3730 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. M. K. H. Winkler, R. Kleerebezem, L. M. M. De Bruin, P. J. T. Verheijen, B. Abbas, J. Habermacher and M. C. M. Van Loosdrecht, Appl. Microbiol. Biotechnol., 97, 7447 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. R. Haron, R. Mat, T. A. Tuan Abdullah and R. A. Rahman, J. Clean. Prod., 172, 314 (2018).

    Article  CAS  Google Scholar 

  49. Y. S. Son, J. M. Jeon, D. H. Kim, Y. H. Yang, Y. S. **, B. K. Cho, S. H. Kim, S. Kumar, B. D. Lee and J. J. Yoon, Int. J. Hydrogen Energy, 46, 36687 (2021).

    Article  CAS  Google Scholar 

  50. J. H. Jo, D. S. Lee, J. Kim and J. M. Park, J. Microbiol. Biotechnol., 19, 291 (2009).

    CAS  PubMed  Google Scholar 

  51. S. H. Kim, S. K. Han and H. S. Shin, Process Biochem., 41, 199 (2006).

    Article  CAS  Google Scholar 

  52. X. Wang and B. **, J. Biosci. Bioeng., 107, 138 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. S. Sarma, V. K. Dubey and V. S. Moholkar, Int. J. Hydrogen Energy, 41, 19972 (2016).

    Article  CAS  Google Scholar 

  54. V. Singh, H. Singh and D. Das, Int. J. Hydrogen Energy, 44, 26905 (2019).

    Article  CAS  Google Scholar 

  55. J. H. Jo, D. S. Lee, D. Park and J. M. Park, Int. J. Hydrogen Energy, 33, 5176 (2018).

    Article  CAS  Google Scholar 

  56. M. T. Skonieczny and V. Yargeau, Int. J. Hydrogen Energy, 34, 3288 (2009).

    Article  CAS  Google Scholar 

  57. S. K. Khanal, W. H. Chen, L. Li and S. Sung, Int. J. Hydrogen Energy, 29, 1123 (2004).

    CAS  Google Scholar 

  58. K. Seifert, M. Waligorska, M. Wojtowski and M. Laniecki, Int. J. Hydrogen Energy, 34, 3671 (2009).

    Article  CAS  Google Scholar 

  59. T. Ito, Y. Nakashimada, K. Senba, T. Matsui and N. Nishio, J. Biosci. Bioeng., 100, 260 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. T. A. Ngo, M. S. Kim and S. J. Sim, Int. J. Hydrogen Energy, 36, 5836 (2011).

    Article  CAS  Google Scholar 

  61. J. Miyake, Y. Ogawa, T. Tanaka, J. Ahn, K. Oka, K. Oyaizu and K. Miyatake, Commun. Chem., 3, 138 (2020).

    Article  CAS  Google Scholar 

  62. S. Shiva Kumar and V. Himabindu, Mater. Sci. Energy Technol., 2, 442 (2019).

    Google Scholar 

  63. K. Prokopius, Proton Exchange Member (PEM) Fuel Cell Engineering Model Powerplant Test Report: Initial Benchmark Tests in the Original Orientation (2011).

  64. Y. C. Lo, X. J. Chen, C. Y. Huang, Y. J. Yuan and J. S. Chang, Int. J. Hydrogen Energy, 38, 15815 (2013).

    Article  CAS  Google Scholar 

  65. M. A. Jáuregui, A. Ladino and D. Malagón-Romero, Int. J. Sustain. Eng., 11, 205 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Research Program to solve social issues with the National Research Foundation of Korea (NRF), funded by the Ministry of Science and ICT [grant number 2017 M3A9E4077234], National Research Foundation of Korea (NRF) [grant numbers NRF-2022R1A2C2003138 and NRF-2019M3E6 A1103979]. This study was also supported by the R&D Program of MOTIE/KEIT [grant number 20016324].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yung-Hun Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.H., Kim, H.J., Bhatia, S.K. et al. Biohydrogen production from glycerol by novel Clostridium sp. SH25 and its application to biohydrogen car operation. Korean J. Chem. Eng. 39, 2156–2164 (2022). https://doi.org/10.1007/s11814-022-1146-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1146-8

Keywords

Navigation