Log in

Optimization of protease production process using bran waste using Bacillus licheniformis

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Protease enzyme production by Bacillus licheniformis bacteria was investigated. Various agricultural wastes as substrate such as wheat bran, rice bran, and sugarcane bagasse were considered. The most important effective parameters on enzyme production, like incubation time, various substrates and solid substrate particle size, media pH, different nitrogen sources in a bench-scale designed bioreactor, were optimized. The optimum protease production conditions, for both Erlenmeyer flask and batch bioreactor, at 37 °C, pH of 8, incubation time of 48h, wheat bran (5 wt%) with the particle size of 1 mm, an equal amount of peptone and yeast extract (1% w/w) and agitation rate of 180 rpm were defined. In addition, maximum protease activity in the Erlenmeyer flask and batch bioreactor was 596 and 683.93 U/mL, respectively. The pH and thermal stability of produced protease were studied; the highest amount of remaining activities at pH 8 and 60 °C were 97 and 63% of initial activities, respectively. Also, shelf-life of the produced protease enzyme retained up to 88% of its initial activity after 30 days of storage at 4 °C. However, the produced enzyme was exposed remarkably compatible with the commercial detergent; the enzyme perfectly washed and removed the stains from the sample cotton textile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Asha and M. Palaniswamy, J. Appl. Pharm. Sci., 8, 119 (2018).

    Article  CAS  Google Scholar 

  2. F. J. Contesini, R. R. d. Melo and H. H. Sato, Crit. Rev. Biotechnol., 38, 321 (2018).

    Article  CAS  Google Scholar 

  3. A. Hakim, F. R. Bhuiyan, A. Iqbal, T. H. Emon, J. Ahmed and A. K. Azad, Heliyon, 4, e00646 (2018).

    Article  Google Scholar 

  4. A. Razzaq, S. Shamsi, A. Ali, Q. Ali, M. Sajjad, A. Malik and M. Ashraf, Front. Bioeng. Biotechnol., 7, 110 (2019).

    Article  Google Scholar 

  5. I. Talhi, L. Dehimat, A. Jaouani, R. Cherfia, M. Berkani, F. Almomani, Y. Vasseghian and N. K. Chaouche, Chemosphere, 286, 131479 (2022).

    Article  CAS  Google Scholar 

  6. R. Hadjidj, A. Badis, S. Mechri, K. Eddouaouda, L. Khelouia, R. Annane, M. El Hattab and B. Jaouadi, Int. J. Biol. Macromol., 114, 1033 (2018).

    Article  CAS  Google Scholar 

  7. J. G. dos Santos Aguilar and H. H. Sato, Food Res. Int., 103, 253 (2018).

    Article  Google Scholar 

  8. M. B. Rao, A. M. Tanksale, M. S. Ghatge and V. V. Deshpande, Microbiol. Mol. Biol. Rev., 62, 597 (1998).

    Article  CAS  Google Scholar 

  9. M. A. Emran, S. A. Ismail and A. M. Hashem, Biocatal. Agric. Biotechnol., 26, 101631 (2020).

    Article  Google Scholar 

  10. D. Agrawal, P. Patidar, T. Banerjee and S. Patil, Process Biochem., 39, 977 (2004).

    Article  CAS  Google Scholar 

  11. K. M. Sharma, R. Kumar, S. Panwar and A. Kumar, J. Genet. Eng. Biotechnol., 15, 115 (2017).

    Article  Google Scholar 

  12. M. Sharma, Y. Gat, S. Arya, V. Kumar, A. Panghal and A. Kumar, Ind. Biotechnol., 15, 69 (2019).

    Article  CAS  Google Scholar 

  13. H. Rekik, N. Z. Jaouadi, F. Gargouri, W. Bejar, F. Frikha, N. Jmal, S. Bejar and B. Jaouadi, Int. J. Biol. Macromol., 121, 1227 (2019).

    Article  CAS  Google Scholar 

  14. V. F. Soares, L. R. Castilho, E. P. Bon and D. M. Freire, Twenty-Sixth Symposium on Biotechnology for Fuels and Chemicals. ABAB Symposium. Humana Press. (2005).

  15. A. I. Adetunji and A. O. Olaniran, Biocatal. Agric. Biotechnol., 24, 101528 (2020).

    Article  Google Scholar 

  16. V. Singh, S. Haque, R. Niwas, A. Srivastava, M. Pasupuleti and C. Tripathi, Front. Microbiol., 7, 2087 (2017).

    Article  Google Scholar 

  17. S. Singh and B. K. Bajaj, Waste Biomass Valorization, 8, 453 (2017).

    Article  CAS  Google Scholar 

  18. R. Potumarthi, S. Ch and A. Jetty, Biochem. Eng. J., 34, 185 (2007).

    Article  CAS  Google Scholar 

  19. U. C. Banerjee, R. K. Sani, W. Azmi and R. Soni, Process Biochem., 35, 213 (1999).

    Article  CAS  Google Scholar 

  20. R. Bergkvist, Acta Chem. Scand., 17, 8 (1963).

    Article  Google Scholar 

  21. F. Bashir, M. Asgher, F. Hussain and M. A. Randhawa, Int. J. Biol. Macromol., 113, 944 (2018).

    Article  CAS  Google Scholar 

  22. M. M. Bradford, Anal. Biochem., 72, 248 (1976).

    Article  CAS  Google Scholar 

  23. A. Sellami-Kamoun, A. Haddar, N. E.-H. Ali, B. Ghorbel-Frikha, S. Kanoun and M. Nasri, Microbiol. Res., 163, 299 (2008).

    Article  CAS  Google Scholar 

  24. J.-K. Yang, L. Shih, Y.-M. Tzeng and S.-L. Wang, Enzyme Microb. Technol., 26, 406 (2000).

    Article  CAS  Google Scholar 

  25. P. Deb, S. A. Talukdar, K. Mohsina, P. K. Sarker and S. A. Sayem, Springerplus, 2, 1 (2013).

    Article  Google Scholar 

  26. F. M. Olajuyigbe and J. O. Ajele, Afr. J. Biochem. Res., 2, 206 (2008).

    Google Scholar 

  27. I. Ahmed, M. A. Zia, T. Iftikhar and H. M. Iqbal, BioResources, 6, 4505 (2011).

    CAS  Google Scholar 

  28. F. Uyar and Z. Baysal, Process Biochem., 39, 1893 (2004).

    Article  CAS  Google Scholar 

  29. A. Sharan and N. S. Darmwal, Bioresour. Technol., 98, 881 (2007).

    Article  Google Scholar 

  30. H. Mukhtar and I. Haq, Sci. World J., 2013, Article ID 538067 (2013).

  31. A. Sumantha, P. Deepa, C. Sandhya, G. Szakacs, C. R. Soccol and A. Pandey, Braz. Arch. Biol. Technol., 49, 843 (2006).

    Article  CAS  Google Scholar 

  32. R. N. Z. R. Abd Rahman, L. P. Geok, M. Basri and A. B. Salleh, Enzyme Microb. Technol., 36, 749 (2005).

    Article  Google Scholar 

  33. S. Gilani, G. Najafpour, H. Heydarzadeh and H. Zare, Chem. Ind. Chem. Eng. Q., 17, 179 (2011).

    Article  CAS  Google Scholar 

  34. K. Jellouli, O. Ghorbel-Bellaaj, H. B. Ayed, L. Manni, R. Agrebi and M. Nasri, Process Biochem., 46, 1248 (2011).

    Article  CAS  Google Scholar 

  35. A. Haddar, R. Agrebi, A. Bougatef, N. Hmidet, A. Sellami-Kamoun and M. Nasri, Bioresour. Technol., 100, 3366 (2009).

    Article  CAS  Google Scholar 

  36. F. Abidi, F. Limam and M. M. Nejib, Process Biochem., 43, 1202 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge Biotechnology Research Center, Babol Noshirvani University of Technology (Iran) for the facilities provided to accomplish the present work. Also, this research did not receive any specific grant from funding agencies of the public, commercial, or from any non-profit organizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghasem Najafpour Darzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Espoui, A.H., Larimi, S.G. & Darzi, G.N. Optimization of protease production process using bran waste using Bacillus licheniformis. Korean J. Chem. Eng. 39, 674–683 (2022). https://doi.org/10.1007/s11814-021-0965-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0965-3

Keywords

Navigation