Log in

Highly stretchable and sensitive strain sensors based on single-walled carbon nanotube-coated nylon textile

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

With increasing demand for wearable electronic devices, strain sensor development with a high stretchability becomes quite critical. To develop a high performance stretchable strain sensor, we used nylon textile obtained from commercial thigh-highs as substrate for coating single-walled CNT (SWNT). Using vacuum-assisted spray-layer-bylayer technique, SWNTs were uniformly coated on the surface of textile fibers. Our SWNT/nylon textile sensor exhibited high sensitivity of 72 gauge factor at 100% strain, fast response, and excellent durability. In addition, the sensors were used for human motion detection by attaching to glove and sewing with leggings. We have a great expectation that high stretchability, sensitivity, and durability of this SWNT/nylon textile strain sensor, with its simple integration to clothing, opens up new opportunities for fabrication of high performance wearable strain sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D.N. Futaba and K. Hata, Nat. Nanotechnol., 6(5), 296 (2011).

    Article  CAS  Google Scholar 

  2. I. Kang, M. J. Schulz, J. H. Kim, V. Shanov and D. Shi, Smart Mater. Struct., 15(3), 737 (2006).

    Article  CAS  Google Scholar 

  3. V. Eswaraiah, K. Balasubramaniam and S. Ramaprabhu, J. Mate r. Chem., 21(34), 12626 (2011).

    Article  CAS  Google Scholar 

  4. T. Giorgino, P. Tormene, F. Lorussi, D. De Rossi and S. Quaglini, IEEE Trans. Neural. Syst. Rehabil. Eng., 17(4), 409 (2009).

    Article  Google Scholar 

  5. P. Calvert, D. Duggal, P. Patra, A. Agrawal and A. Sawhney, Mol. Cryst. Liq. Cr yst., 484(1), 291 (2008).

    CAS  Google Scholar 

  6. C. Cochrane, V. Koncar, M. Lewandowski and C. Dufour, Sensors, 7(4), 473 (2007).

    Article  CAS  Google Scholar 

  7. K.K. Kim, S. Hong, H. M. Cho, J. Lee, Y. D. Suh, J. Ham and S. H. Ko, Nano Lett., 15(8), 5240 (2015).

    Article  CAS  Google Scholar 

  8. M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu and I. Park, ACS Nano., 8(5), 5154 (2014).

    Article  CAS  Google Scholar 

  9. C. Yan, J. Wang, W. Kang, M. Cui, X. Wang, C. Y. Foo, K. J. Chee and P. S. Lee, Adv. Mater., 26(13), 2022 (2014).

    Article  CAS  Google Scholar 

  10. H. Tian, Y. Shu, Y.-L. Cui, W.-T. Mi, Y. Yang, D. **e and T.-L. Ren, Nanoscale, 6(2), 699 (2014).

    Article  CAS  Google Scholar 

  11. Y. Wang, L. Wang, T. Yang, X. Li, X. Zang, M. Zhu, K. Wang, D. Wu and H. Zhu, Adv. Funct. Mater., 24(29), 4666 (2014).

    Article  CAS  Google Scholar 

  12. T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D.N. Futaba and K. Hata, Nat. Nanotechnol., 6(5)), 296 (2011).

    Article  CAS  Google Scholar 

  13. D. J. Lipomi, M. Vosgueritchian, B. C. Tee, S. L. Hellstrom, J. A. Lee, C. H. Fox and Z. Bao, Nat. Nanotechnol., 6(12), 788 (2011).

    Article  CAS  Google Scholar 

  14. S. Luo and T. Liu, Ad v. Mat e r., 25(39), 5650 (2013).

    CAS  Google Scholar 

  15. W. Obitayo and T. Liu, J. Sensors, 2012, 652438 (2012).

    Article  Google Scholar 

  16. C. Stampfer, A. Jungen, R. Linderman, D. Obergfell, S. Roth and C. Hierold, Nano Lett., 6(7), 1449 (2006).

    Article  CAS  Google Scholar 

  17. S. Tadakaluru, W. Thongsuwan and P. Singjai, Sensors, 14(1), 868 (2014).

    Article  Google Scholar 

  18. P. Slobodian, P. Riha, R. Benlikaya, P. Svoboda and D. Petras, IEEE Sens. J., 13(10), 4045 (2013).

    Article  CAS  Google Scholar 

  19. M. Amjadi, Y. J. Yoon and I. Park, Nanotechnol., 26(37), 375501 (2015).

    Article  Google Scholar 

  20. K. Suzuki, K. Yataka, Y. Okumiya, S. Sakakibara, K. Sako, H. Mimura and Y. Inoue, ACS Sens., 1(6), 817 (2016).

    Article  CAS  Google Scholar 

  21. A. Vohra, P. Imin, M. Imit, R. S. Carmichael, J. S. Meena, A. Adronov and T. B. Carmichael, RSC Adv., 6(35), 29254 (2016).

    Article  CAS  Google Scholar 

  22. S. Ryu, P. Lee, J. B. Chou, R. Xu, R. Zhao, A. J. Hart and S.-G. Kim, AC S N a n o, 9(6), 5929 (2015).

    CAS  Google Scholar 

  23. E. Roh, B.-U. Hwang, D. Kim, B.-Y. Kim and N.-E. Lee, ACS Nano, 9(6), 6252 (2015).

    Article  CAS  Google Scholar 

  24. M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu and I. Park, AC S Nano, 8(5), 5154 (2014).

    Article  CAS  Google Scholar 

  25. M. Amjadi, K. U. Kyung, I. Park and M. Sitti, Adv. Funct. Mater., 26(11), 1678 (2016).

    Article  CAS  Google Scholar 

  26. R. Ma, J. Lee, D. Choi, H. Moon and S. Baik, Nano Lett., 14(4), 1944 (2014).

    Article  CAS  Google Scholar 

  27. S. Seyedin, J. M. Razal, P. C. Innis, A. Jeiranikhameneh, S. Beirne and G. G. Wallace, ACS Appl. Mater. Interfaces, 7(38), 21150 (2015).

    Article  CAS  Google Scholar 

  28. T. J. Kang, A. Choi, D.-H. Kim, K. **, D. K. Seo, D. H. Jeong, S.-H. Hong, Y.W. Park and Y.H. Kim, Smart Mater. Struct., 20(1), 015004 (2010).

    Article  Google Scholar 

  29. M. in het Panhuis, J. Wu, S. A. Ashraf and G. G. Wallace, Synth. Met., 157(8), 358 (2007).

    Article  CAS  Google Scholar 

  30. R. Zhang, H. Deng, R. Valenca, J. **, Q. Fu, E. Bilotti and T. Peijs, Sens. Actuat. A- Phys., 179, 83 (2012).

    Article  CAS  Google Scholar 

  31. C. Robert, J. F. Feller and M. Castro, ACS Appl. Mater. Interfaces, 4(7), 3508 (2012).

    Article  CAS  Google Scholar 

  32. W. Zhang, L. Johnson, S. R. P. Silva and M. Lei, Appl. Surf. Sci., 258(20), 8209 (2012).

    Article  CAS  Google Scholar 

  33. L. M. Castano and A. B. Flatau, Smart Mater. Struct., 23(5), 053001 (2014).

    Article  Google Scholar 

  34. Z. Yao, C. L. Kane and C. Dekker, Phys. Rev. Lett., 84(13), 2941 (2000).

    Article  CAS  Google Scholar 

  35. D. S. Hecht, L. Hu and G. Irvin, Ad v. Ma t e r., 23(13), 1482 (2011).

    CAS  Google Scholar 

  36. S.Y. Kim, J. Hong, R. Kavian, S. W. Lee, M. N. Hyder, Y. Shao-Horn and P. T. Hammond, Energy Environ. Sci., 6(3), 888 (2013).

    Article  CAS  Google Scholar 

  37. K. Saetia, J. M. Schnorr, M. M. Mannarino, S. Y. Kim, G. C. Rutledge, T. M. Swager and P. T. Hammond, Adv. Funct. Mater., 24(4), 492 (2014).

    Article  CAS  Google Scholar 

  38. P. A. Kralchevsky and K. Nagayama, Langmuir, 10(1), 23 (1994).

    Article  CAS  Google Scholar 

  39. K. C. Krogman, J. L. Lowery, N. S. Zacharia, G. C. Rutledge and P. T. Hammond, Nat. Mate r., 8(6), 512 (2009).

    Article  CAS  Google Scholar 

  40. S. W. Lee, B.-S. Kim, S. Chen, Y. Shao-Horn and P. T. Hammond, J. Am. Chem. Soc., 131(2), 671 (2008).

    Article  Google Scholar 

  41. T.-K. Hong, D. W. Lee, H. J. Choi, H. S. Shin and B.-S. Kim, AC S Nano, 4(7), 3861 (2010).

    Article  CAS  Google Scholar 

  42. C. Canal, R. Molina, E. Bertran and P. Erra, J. Adhes. Sci. Technol., 18(9), 1077 (2004).

    Article  CAS  Google Scholar 

  43. W. Zhang, L. Johnson, S. R. P. Silva and M. Lei, Appl. Surf. Sci., 258(20), 8209 (2012).

    Article  CAS  Google Scholar 

  44. A. A. Shvedova, V. Castranova, E. R. Kisin, D. Schwegler-Berry, A. R. Murray, V. Z. Gandelsman, A. Maynard and P. Baron, J. Tox-icol. Environ. Health, 66(20), 1909 (2003).

    Article  CAS  Google Scholar 

  45. A. Mata, A. J. Fleischman and S. Roy, Biomed. Microdevices, 7(4), 281 (2005).

    Article  CAS  Google Scholar 

  46. M. Hempel, D. Nezich, J. Kong and M. Hofmann, Nano Lett., 12(11), 5714 (2012).

    Article  CAS  Google Scholar 

  47. J. J. Park, W. J. Hyun, S. C. Mun, Y. T. Park and O. O. Park, ACS Appl. Mater. Inter faces, 7(11), 6317 (2015).

    Article  CAS  Google Scholar 

  48. C. Park, H. Jung, H. Lee, S. Hong, H. Kim and S. J. Cho, Sensors, 18(8), 2673 (2018).

    Article  Google Scholar 

  49. G.-H. Lim, N.-E. Lee and B. Lim, J. Mater. Chem. C, 4(24), 5642 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by the Sports Promotion Fund of Seoul Olympic Sports Promotion Foundation from Ministry of Culture, Sports and Tourism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo-Hwan Jeong.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Y., Kim, J., Hwang, H. et al. Highly stretchable and sensitive strain sensors based on single-walled carbon nanotube-coated nylon textile. Korean J. Chem. Eng. 36, 800–806 (2019). https://doi.org/10.1007/s11814-019-0246-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0246-6

Keywords

Navigation