Log in

Modelling and analysis of pre-combustion CO2 capture with membranes

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A pre-combustion CO2 capture system was modelled with three different membranes. It comprised an amine absorber for the elimination of H2S, high- and low-temperature water gas shift reactors for the conversion of CO to CO2 and a membrane to keep over 90% of the CO2 in the retentate. The absorber and equilibrium reactors were modelled using rigorous models, while the partial least squares model was used for three different types of membranes to predict the experimental results. The effectiveness of the modelling of the reactors and membranes was tested through comparison of simulated results with experimental data. The effects of operating pressure and membrane type are also discussed, and it was found that using a smaller membrane under high pressure lowered the membrane’s cost but also lowered energy recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Davison, Energy, 32, 1163 (2007).

    Article  CAS  Google Scholar 

  2. H. J. Herzog, Environ. Sci. Techonol., 35, 148 (2001).

    Article  Google Scholar 

  3. J. Franz and V. Scherer, J. Membr. Sci., 359, 173 (2010).

    Article  CAS  Google Scholar 

  4. J. Gibbins and H. Chalmers, Energ. Policy, 36, 4317 (2008).

    Article  Google Scholar 

  5. A. A. Olajire, Energy, 35, 2610 (2010).

    Article  CAS  Google Scholar 

  6. W. J. Koros and G. K. Fleming, J. Membr. Sci., 83, 1 (1993).

    Article  CAS  Google Scholar 

  7. M. Bracht, P. T. Alderliesten, R. Kloster, R. Pruschek, G. Haupt, E. Xue, J. R.H. Ross, M.K. Koukou and N. Papayannakos, Energy Convers. Mange., 38, S159 (1997).

    Article  CAS  Google Scholar 

  8. S. Shelly, Chem. Eng. Prog., 105, 42 (2009).

    Google Scholar 

  9. C. A. Scholes, K. H. Smith, S. E. Kentish and G.W. Stevens, Int. J. Greenh. Gas Con., 4, 739 (2010).

    Article  CAS  Google Scholar 

  10. P. Geladi and B. R. Kowalski, Anal. Chim. Acta, 185, 1 (1986).

    Article  CAS  Google Scholar 

  11. M.A. Sharaf, D. L. Illman and B. R. Kowalski, Chemometrics, Wiley, New York (1986).

    Google Scholar 

  12. G. Baffi, E.B. Martin and A. J. Morris, Comput. Chem. Eng., 23, 395 (1999).

    Article  CAS  Google Scholar 

  13. M.-J. Park, M. T. Dokucu and F. J. Doyle III, Ind. Eng. Chem. Res., 43, 7227 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myung-June Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, J.H., Park, MJ., Kim, J. et al. Modelling and analysis of pre-combustion CO2 capture with membranes. Korean J. Chem. Eng. 30, 1187–1194 (2013). https://doi.org/10.1007/s11814-013-0042-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-013-0042-7

Key words

Navigation