Log in

Dietary Supplementation of β-Carotene Reveals miRNAs Involved in the Regulation of Carotenoid Metabolism in Crassostrea gigas

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Carotenoids play crucial physiological roles in animals. A comprehensive investigation into the mechanism of carotenoid metabolism in oysters will establish a theoretical foundation for further development of its carotenoid-rich traits. However, the information on the function of miRNA in β-carotene metabolism in oysters is limited. To elucidate the mechanisms underlying miRNA regulation of carotenoid metabolism in oysters, we compared the expressions of miRNA in digestive gland tissues of Pacific oyster (Crassostrea gigas) fed with a β-carotene supplemented diet and a normal diet, respectively. A total of 690 candidate miRNAs in the Pacific oyster digestive gland tissues were identified, including 590 known miRNAs and 111 unknown miRNAs. Three differentially expressed miRNAs were obtained in the carotenoid-fed and normal groups, associated to 137 differentially expressed target genes. Moreover, the GO enrichment analysis revealed that the differentially expressed target genes were mainly involved in transmembrane transport activity. KEGG enrichment showed that the differentially expressed target genes were involved in ABC transport. Analysis of the mRNA-miRNA network revealed that novel0025 played a central role in carotenoid metabolism, and it was negatively correlated with the expression of 46 mRNAs. In addition, down-regulated expression of novel0025 upregulated the expression of the lipoprotein gene LOC105342186, suggesting a potential regulatory role in carotenoid metabolism. Our results provide useful information for elucidating the miRNA regulation mechanism during carotenoids metabolism in the Pacific oyster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chimsung, N., Lall, S. P., Tantikitti, C., Verlhac-Trichet, V., and Milley, J. E., 2013. Effects of dietary cholesterol on astaxanthin transport in plasma of Atlantic salmon (Salmo salar). Comparative Biochemistry And Physiology B: Biochemistry & Molecular Biology, 165 (1): 73–81.

    Article  CAS  Google Scholar 

  • Enright, A. J., John, B., Gaul, U., Tuschl, T., Sander, C., and Marks, D. S., 2003. MicroRNA targets in Drosophila. Genome Biology, 5 (1): R1.

    Article  Google Scholar 

  • Feng, D. D., Li, Q., Yu, H., Kong, L. F., and Du, S. J., 2018. Transcriptional profiling of long non-coding RNAs in mantle of Crassostrea gigas and their association with shell pigmentation. Scientific Reports, 8 (1): 1436.

    Article  Google Scholar 

  • Feng, D. D., Li, Q., Yu, H., Liu, S. K., Kong, L. F., and Du, S. J., 2020. Integrated analysis of microRNA and mRNA expression profiles in Crassostrea gigas to reveal functional miRNA and miRNA-targets regulating shell pigmentation. Scientific Reports, 10 (1): 20238.

    Article  CAS  Google Scholar 

  • Friedlander, M. R., Mackowiak, S. D., Li, N., Chen, W., and Rajewsky, N., 2012. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Research, 40 (1): 37–52.

    Article  Google Scholar 

  • Girard, A., Sachidanandam, R., Hannon, G. J., and Carmell, M. A., 2006. A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature, 442 (7099): 199–202.

    Article  Google Scholar 

  • Karadas, F., Pappas, A. C., Surai, P. F., and Speake, B. K., 2005. Embryonic development within carotenoid-enriched eggs influences the post-hatch carotenoid status of the chicken. Comparative Biochemistry and Physiology B: Biochemistry & Molecular Biology, 141 (2): 244–251.

    Article  Google Scholar 

  • Kruger, J., and Rehmsmeier, M., 2006. RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Research, 34: W451–W454.

    Article  Google Scholar 

  • Langmead, B., Trapnell, C., Pop, M., and Salzberg, S. L., 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology, 10 (3): R25.

    Article  Google Scholar 

  • Li, N., Hu, J. J., Wang, S., Cheng, J., Hu, X. L., Lu, Z. Y., et al., 2010. Isolation and identification of the main carotenoid pigment from the rare orange muscle of the Yesso scallop. Food Chemistry, 118 (3): 616–619.

    Article  CAS  Google Scholar 

  • Li, Z. Z., Li, Q., Liu, S. K., Han, Z. Q., Kong, L. F., and Yu, H., 2021. Integrated analysis of coding genes and non-coding rnas associated with shell color in the Pacific oyster (Crassostrea gigas). Marine Biotechnology (NY), 23 (3): 417–429.

    Article  CAS  Google Scholar 

  • Liu, H. L., Zheng, H. P., Zhang, H. K., Deng, L. H., Liu, W. H., Wang, S. Q., et al., 2015. A de novo transcriptome of the noble scallop, Chlamys nobilis, focusing on mining transcripts for carotenoid-based coloration. BMC Genomics, 16 (1): 44.

    Article  Google Scholar 

  • Mao, X., Cai, T., Olyarchuk, J. G., and Wei, L., 2005. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics, 21 (19): 3787–3793.

    Article  CAS  Google Scholar 

  • Maoka, T., 2009. Recent progress in structural studies of carotenoids in animals and plants. Archives of Biochemistry and Biophysics, 483 (2): 191–195.

    Article  CAS  Google Scholar 

  • Maoka, T., 2011. Carotenoids in marine animals. Marine Drugs, 9 (2): 278–293.

    Article  CAS  Google Scholar 

  • Maoka, T., 2020. Carotenoids as natural functional pigments. Journal of Natural Medicines, 74 (1): 1–16.

    Article  CAS  Google Scholar 

  • McGeary, S. E., Lin, K. S., Shi, C. Y., Pham, T. M., Bisaria, N., Kelley, G. M., et al., 2019. The biochemical basis of microRNA targeting efficacy. Science, 366 (6472): eaav1741.

    Article  CAS  Google Scholar 

  • Moran, N. A., and Jarvik, T., 2010. Lateral transfer of genes from fungi underlies carotenoid production in aphids. Science, 328 (5978): 624–627.

    Article  CAS  Google Scholar 

  • Olsen, R. E., Kiessling, A., Milley, J. E., Ross, N. W., and Lall, S. P., 2005. Effect of lipid source and bile salts in diet of Atlantic salmon, Salmo salar L., on astaxanthin blood levels. Aquaculture, 250 (3–4): 804–812.

    Article  CAS  Google Scholar 

  • Parker, R. S., 1996. Absorption, metabolism, and transport of carotenoids. FASEB Journal, 10 (5): 542–551.

    Article  CAS  Google Scholar 

  • Pu, M. F., Chen, J., Tao, Z. T., Miao, L. L., Qi, X. M., Wang, Y. Z., et al., 2019. Regulatory network of miRNA on its target: Coordination between transcriptional and post-transcriptional regulation of gene expression. Cellular and Molecular Life Sciences, 76 (3): 441–451.

    Article  CAS  Google Scholar 

  • Qin, Q. H., Wang, Z. L., Tian, L. Q., Gan, H. Y., Zhang, S. W., and Zeng, Z. J., 2014. The integrative analysis of microRNA and mRNA expression in Apis mellifera following maze-based visual pattern learning. Insect Science, 21 (5): 619–636.

    Article  CAS  Google Scholar 

  • Raghuvanshi, S., Reed, V., Blaner, W. S., and Harrison, E. H., 2015. Cellular localization of β-carotene 15,15′ oxygenase-1 (BCO1) and β-carotene 9’,10’ oxygenase-2 (BCO2) in rat liver and intestine. Archives of Biochemistry and Biophysics, 572: 19–27.

    Article  CAS  Google Scholar 

  • Rosani, U., Abbadi, M., Green, T., Bai, C. M., Turolla, E., Arcangeli, G., et al., 2020. Parallel analysis of miRNAs and mRNAs suggests distinct regulatory networks in Crassostrea gigas infected by Ostreid herpesvirus 1. BMC Genomics, 21 (1): 620.

    Article  CAS  Google Scholar 

  • Roth, M. S., Cokus, S. J., Gallaher, S. D., Walter, A., Lopez, D., Erickson, E., et al., 2017. Chromosome-level genome assembly and transcriptome of the green alga Chromochloris zofingiensis illuminates astaxanthin production. Proceedings of the National Academy of Sciences of the United States of America, 114 (21): E4296–E4305.

    CAS  Google Scholar 

  • Starega-Roslan, J., Galka-Marciniak, P., and Krzyzosiak, W. J., 2015. Nucleotide sequence of miRNA precursor contributes to cleavage site selection by Dicer. Nucleic Acids Research, 43 (22): 10939–10951.

    Article  CAS  Google Scholar 

  • Tan, K., Guo, Z., Zhang, H. C., Ma, H. Y., Li, S. K., and Zheng, H. P., 2021. Carotenoids regulation in polymorphic noble scallops Chlamys nobilis under different light cycle. Aquaculture, 531: 735937.

    Article  CAS  Google Scholar 

  • Toews, D. P. L., Hofmeister, N. R., and Taylor, S. A., 2017. The evolution and genetics of carotenoid processing in animals. Trends in Genetics, 33 (3): 171–182.

    Article  CAS  Google Scholar 

  • Vershinin, A., 1996. Carotenoids in mollusca: Approaching the functions. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 113 (1): 63–71.

    Article  Google Scholar 

  • Verwaal, R., Jiang, Y., Wang, J., Daran, J. M., Sandmann, G., van den Berg, J. A., et al., 2010. Heterologous carotenoid production in Saccharomyces cerevisiae induces the pleiotropic drug resistance stress response. Yeast, 27 (12): 983–998.

    Article  CAS  Google Scholar 

  • Wan, S., Li, Q., Yu, H., Liu, S. K., and Kong, L. F., 2022a. A nuclear receptor heterodimer, CgPPAR2-CgRXR, acts as a regulator of carotenoid metabolism in Crassostrea gigas. Gene, 827: 146473.

    Article  CAS  Google Scholar 

  • Wan, S., Li, Q., Yu, H., Liu, S. K., and Kong, L. F., 2022b. Transcriptome analysis based on dietary beta-carotene supplement reveals genes potentially involved in carotenoid metabolism in Crassostrea gigas. Gene, 818: 146226.

    Article  CAS  Google Scholar 

  • Wang, X., Wang, W. J., Li, Z., Sun, G. H., Xu, X. H., Feng, Y. W., et al., 2021. Comprehensive analysis of differentially expressed ncRNA, mRNA, and their ceRNA networks in the regulation of glycogen content in the Pacific oyster, Crassostrea gigas. Aquaculture, 531: 735895.

    Article  CAS  Google Scholar 

  • Widjaja-Adhi, M. A., Lobo, G. P., Golczak, M., and Von Lintig, J., 2015. A genetic dissection of intestinal fat-soluble vitamin and carotenoid absorption. Human Molecular Genetics, 24 (11): 3206–3219.

    Article  CAS  Google Scholar 

  • Yabuzaki, J., 2017. Carotenoids database: Structures, chemical fingerprints and distribution among organisms. Database, 2017: bax004.

    Article  Google Scholar 

  • Young, M. D., Wakefield, M. J., Smyth, G. K., and Oshlack, A., 2010. Gene ontology analysis for RNA-seq: Accounting for selection bias. Genome Biology, 11 (2): R14.

    Article  Google Scholar 

  • Yue, C. Y., Li, Q., and Yu, H., 2022. Integrated analysis of miRNA and mRNA expression profiles identifies potential regulatory interactions during sexual development of Pacific oyster Crassostrea gigas. Aquaculture, 546: 737294.

    Article  CAS  Google Scholar 

  • Zhou, L., Chen, J., Li, Z. Z., Li, X., Hu, X. X., Huang, Y., et al., 2010. Integrated profiling of microRNAs and mRNAs: MicroRNAs located on Xq27.3 associate with clear cell renal cell carcinoma. PLoS One, 5 (12): e15224.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Shandong Science and Technology Small and Medium Enterprises Innovation Ability Improvement Project (No. 2021TSGC 1240), the Key R&D Program of Shandong Province, China (No. 2022TZXD002), and the China Agriculture Research System Project (No. CARS-49).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, D., Wan, S., Yu, H. et al. Dietary Supplementation of β-Carotene Reveals miRNAs Involved in the Regulation of Carotenoid Metabolism in Crassostrea gigas. J. Ocean Univ. China 23, 1045–1053 (2024). https://doi.org/10.1007/s11802-024-5766-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-024-5766-y

Key words

Navigation