Log in

Chitosan oligosaccharide-Ca complex accelerates the depuration of cadmium from Chlamys ferrari

  • Doctor Forum
  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

This study investigated the effect of a chitosan oligosaccharide-Ca complex (COS-Ca) on the depuration of cadmium (Cd) from Chlamys ferrari. After exposure to 0.5 mg L−1 CdCl2 for 3 or 7 d, the scallops were treated by COS-Ca prior to determination of Cd, calcium (Ca) and zinc (Zn) contents, Cd distribution in organs, malondialdehyde (MDA) content and antioxidant variables. Results showed that COS-Ca reduced Cd content in the viscera of the scallops, with highest Cd depuration rate (47%) observed on day 3. The COS-Ca concentration substantially affected Cd depuration, and the exposure to 8.75 mg L−1 COS-Ca led to significantly higher Cd depuration rate compared with those of lower COS-Ca concentrations (1.75, 3.5, 5.25, and 7.00 mg L−1). Distribution analysis of Cd in scallop organs indicated that COS-Ca significantly reduced Cd content in the kidney throughout the 5-d experiment, as well as in the gill during the early stage of Cd depuration. In addition, COS-Ca treatment decreased glutathione peroxidase (GSH-Px) activity and MDA content while increasing superoxide dismutase (SOD) and catalase (CAT) activities on different days. Our work suggested COS-Ca complex treatment as an effective method for acceleration of Cd depuration from Cd-contaminated bivalves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baldisserotto, B., Kamundeb, C., Matsuo, A., and Wood C. M., 2004. Acute waterborne cadmium uptake in rainbow trout is reduced by dietary calcium carbonate. Comparative Biochemistry and Physiology, Part C, 137: 363–372.

    Article  Google Scholar 

  • Bebianno, M. J., Company, R., Serafim, A., Camus, L., Cosson, R. P., and Fiala-Médoni A., 2005. Antioxidant systems and lipid peroxidation in Bathymodiolus azoricus from Mid-Atlantic Ridge hydrothermal vent fields. Aquatic Toxicology, 75: 354–373.

    Article  Google Scholar 

  • Campbell, P. G. C., Giguère, A., Bonneris, E., and Hare, L., 2005. Cadmium-handling strategies in two chronically exposed indigenous freshwater organisms-the yellow perch (Perca flavescens) and the floater mollusc (Pyganodon grandis). Aquatic Toxicology, 72: 83–97.

    Article  Google Scholar 

  • Casalino, E., Calzaretti, G., Sblano, C., and Landriscina, C., 2002. Molecular inhibitory mechanisms of antioxidant enzymes in rat liver and kidney by cadmium. Toxicology, 179: 37–50.

    Article  Google Scholar 

  • Chan, K. W., Cheung, R. Y. H., Leung, S. F., and Wong, M. H., 1999. Depuration of metals from soft tissues of oysters (Crassostrea gigas) transplanted from a contaminated site to clean sites. Environmental Pollution, 105: 299–310.

    Article  Google Scholar 

  • Clara Rebouças do Amaral, M., de Freitas Rebelo, M., Paulo, Machado Torres, J., and Christian Pfeiffer, W., 2005. Bioaccumulation and depuration of Zn and Cd in mangrove oysters (Crassostrea rhizophorae, Guilding, 1828) transplanted to and from a contaminated tropical coastal lagoon. Marine Environmental Research, 59: 277–285.

    Article  Google Scholar 

  • Das, S. and Jana, B. B., 1999. Dose-dependent uptake and Eichhornia-induced elimination of cadmium in various organs of the freshwater mussel, Lamellidens marginalis (Linn.). Ecological Engineering, 12: 207–229.

    Article  Google Scholar 

  • Engel, D. W., 1999. Accumulation and cytosolic partitioning of metals in the American oyster Crassostrea virginica. Marine Environmental Research, 47: 89–102.

    Article  Google Scholar 

  • Franklin, N. M., Glover C. N., Nicol, J. A., and Wood, C. M., 2005. Calcium/cadmium interactions at uptake surfaces in rainbow trout: waterborne versus dietary routes of exposure. Environmental Toxicology and Chemistry, 24: 2954–2964.

    Article  Google Scholar 

  • Geffard, A., Amiard, J. C., and Amiard-Triquet, C., 2002. Kinetics of metal elimination in oysters from a contaminated estuary. Comparative Biochemistry and Physiology, Part C: Toxicology and Pharmacology, 131: 281–293.

    Article  Google Scholar 

  • Giguère, A., Campbell, P. G. C., Hare, L., and Couture, P., 2006. Sub-cellular partitioning of cadmium, copper, nickel and zinc in indigenous yellow perch (Perca flavescens) sampled along a polymetallic gradient. Aquatic Toxicology, 77: 178–189.

    Article  Google Scholar 

  • Gould, E. and Fowler, B. A., 1991. Scallops and pollution. In: Scallops: biology, ecology and aquaculture. Shumway, S. E. and Parsons G. J. eds., Elsevier, Amsterdam, the Netherlands, 495–515.

    Google Scholar 

  • Guan, B., Ni, W., Wu, Z., and Lai, Y., 2009. Removal of Mn(II) and Zn(II) ions from flue gas desulfurization wastewater with water-soluble chitosan. Separation and Purification Technology, 65: 269–274.

    Article  Google Scholar 

  • Han, Y. and Lin, Q., 2007. Preparation of Chitobiose by hydroperoxide degradation with ultrafiltration. Journal of Bei**g Union University (Natural Science Edition), 21: 67–69.

    Google Scholar 

  • Henrik Hansen, B., Rømma, S., Garmo, Ø. A., Pedersen, S. A., Olsvik, P. A., and Andersen, R. A., 2007. Induction and activity of oxidative stress-related proteins during waterborne Cd/Zn-exposure in brown trout (Salmo trutta). Chemosphere, 67: 2241–2249.

    Article  Google Scholar 

  • Inza, B., Ribeyre, F., Maury-Brachet, R., and Boudou, A., 1997. Tissue distribution of inorganic mercury, methylmercury and cadmium in the Asiatic clam (Corbicula fluminea) in relation to the contamination levels of the water column and sediment. Chemosphere, 35: 2817–2836.

    Article  Google Scholar 

  • Jayakumar, R., Chennazhi, K. P., Muzzarelli, R. A. A., Tamura, H., Nair, S. V., and Selvamurugan, N., 2010. Chitosan conjugated DNA nanoparticles in gene therapy. Carbohydrate Polymers, 79: 1–8.

    Article  Google Scholar 

  • Jo, P. G., Choi, Y. K., and Choi, C. Y., 2008. Cloning and mRNA expression of antioxidant enzymes in the Pacific oyster, Crassostrea gigas in response to cadmium exposure. Comparative Biochemistry and Physiology, Part C: Toxicology and Pharmacology, 147: 460–469.

    Article  Google Scholar 

  • Li, R., Zhou, Y., Ji, J., and Wang, L., 2011. Oxidative damages by cadmium and the protective effects of low-molecular-weight chitosan in the freshwater crab (Sinopotamon yangtsekiense, Bott, 1967). Aquaculture Research, 42: 506–515.

    Article  Google Scholar 

  • Mladenovska, K., Raicki, R. S., Janevik, E. I., Ristoski, T., Pavlova, M. J., Kavrakovski, Z., Dodov, M. G., and Goracinova, K., 2007. Colon-specific delivery of 5-aminosalicylic acid from chitosan-Ca-alginate microparticles. International Journal of Pharmaceutics, 342: 124–136.

    Article  Google Scholar 

  • Nemmiche, S., Chabane-Sari, D., and Guiraud, P., 2007. Role of α-tocopherol in cadmium-induced oxidative stress in Wistar rat’s blood, liver and brain. Chemico-Biological Interactions, 170: 221–230.

    Article  Google Scholar 

  • Ngo, H. T. T., Gerstmann, S., and Frank, H., 2010. Subchronic effects of environment-like cadmium levels on the bivalve Anodonta anatina (Linnaeus 1758): I. Bioaccumulation, distribution and effects on calcium metabolism. Toxicological and Environmental Chemistry, 93: 1788–1801.

    Article  Google Scholar 

  • Ojo, A. A. and Wood, C. M., 2008. In vitro characterization of cadmium and zinc uptake via the gastro-intestinal tract of the rainbow trout (Oncorhynchus mykiss): Interactive effects and the influence of calcium. Aquatic Toxicology, 89: 55–64.

    Article  Google Scholar 

  • Perceval, O., Couillard, Y., Pinel-Alloul, B., and Campbell, P. G. C., 2006. Linking changes in subcellular cadmium distribution to growth and mortality rates in transplanted freshwater bivalves (Pyganodon grandis). Aquatic Toxicology, 79: 87–98.

    Article  Google Scholar 

  • Qiu, J. W., **e, Z. C., and Wang, W. X., 2005. Effects of calcium on the uptake and elimination of cadmium and zinc in Asiatic clams. Archives of Environmental Contamination and Toxicology, 48: 278–287.

    Article  Google Scholar 

  • Shi, D. and Wang, W. X., 2003. Understanding the differences in Cd and Zn bioaccumulation and subcellular storage among different populations of marine clams. Environmental Science and Technology, 38: 449–456.

    Article  Google Scholar 

  • Silvestre, F., Dierick, J. F., Dumont, V., Dieu, M., Raes, M., and Devos, P., 2006. Differential protein expression profiles in anterior gills of Eriocheir sinensis during acclimation to cadmium. Aquatic Toxicology, 76: 46–58.

    Article  Google Scholar 

  • Verbost, P. M., Van Rooij, J., Flik, G., Lock, R. A. C., and Wendelaar Bonga, S. E., 1989. The movement of cadmium through freshwater trout branchial epithelium and its interference with calcium transport. Journal of experimental biology, 145: 185–197.

    Google Scholar 

  • Wang, D. F., Sun, J. P., Xu, W., Wang, C. H., Wu, H., Hou, Y. F., and Xue, C. H., 2007. Preparation of a polysaccharidemetal complex for heavy metal removal. China Patent CN2007100-84282.8.

  • Wood, C. M., 2001. Toxic responses of the gill. In: Target Organ Toxicity in Marine and Freshwater Teleosts, vol. 1: Organs. Schlenk, D. W. and Benson, W. H. eds., Taylor and Francis, Washington DC, 89pp.

    Google Scholar 

  • Wu, S. M., Shih, M. J., and Ho, Y. C., 2007. Toxicological stress response and cadmium distribution in hybrid tilapia (Oreochromis sp.) upon cadmium exposure. Comparative Biochemistry and Physiology, Part C: Toxicology and Pharmacology, 145: 218–226.

    Article  Google Scholar 

  • Zhang, Y., Song, J., Yuan, H., Xu Y., and He, Z., 2010. Concentrations of cadmium and zinc in seawater of Bohai bay and their effects on biomarker responses in the bivalve Chlamys farreri. Archives of Environmental Contamination and Toxicology, 59: 120–128.

    Article  Google Scholar 

  • Zohouri, M. A., Pyle, G. G., and Wood, C. M., 2001. Dietary Ca inhibits waterborne Cd uptake in Cd-exposed rainbow trout, Oncorhynchus mykiss Comparative Biochemistry and Physiology, Part C: Toxicology and Pharmacology, 130: 347–356.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongfeng Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, G., Sun, J., Wang, D. et al. Chitosan oligosaccharide-Ca complex accelerates the depuration of cadmium from Chlamys ferrari . J. Ocean Univ. China 11, 219–226 (2012). https://doi.org/10.1007/s11802-012-1893-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-012-1893-y

Keyword

Navigation