Log in

Proposals from binary tree and spatio-temporal tunnel for temporal segmentation of rough videos

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

Existing temporal segmentation methods suffer from the problems of high computational complexity and complicated steps. To address this issue, we present a method that combines the binary tree and spatio-temporal tunnel (STT) for temporal segmentation of rough videos. First, we compute initial cumulative spatio-temporal flow to determine flow overflow of sub-video which is divided from a rough video. Second, the decision tree is generated by combining binary tree and balance factor to dynamically adjust the sampling line of the STT. Finally, pixels on the sampling line are extracted to generate an adaptive STT for temporal proposals. Experimental results show that the computational complexity of the proposed method is significantly better than that of the comparison methods while ensuring accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. PENG J L, ZHAO Y L, WANG L M. Research on video abnormal behavior detection based on deep learning[J]. Laser & optoelectronics progress, 2021, 58(06): 51–61.

    Google Scholar 

  2. ZHANG Z, NIE Y, SUN H, et al. Multi-view video synopsis via simultaneous object-shifting and view-switching optimization[J]. IEEE transactions on image processing, 2020, 29: 971–985.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. LI T Y, BING B, WU X X. Boundary discrimination and proposal evaluation for temporal action proposal generation[J]. Multimedia tools and applications, 2021, 80(02): 2123–2139.

    Article  Google Scholar 

  4. AN P, LIANG J X, MA J. LiDAR-camera-system-based 3D object detection with proposal selection and grid attention pooling[J]. Applied optics, 2022, 61(11): 2998–3007.

    Article  ADS  Google Scholar 

  5. MURTAZA F, YOUSAF M H, VELASTIN S A. PMHI: proposals from motion history images for temporal segmentation of long uncut videos[J]. IEEE signal processing letters, 2018, 25(02): 179–183.

    Article  ADS  Google Scholar 

  6. QU J J, XIN Y H. Combined continuous frame difference with background difference method for moving object detection[J]. Acta photonica sinica, 2014, 43(07): 219–226.

    Google Scholar 

  7. NAWAZ M, YAN H. Saliency detection using deep features and affinity-based robust background subtraction[J]. IEEE transactions on multimedia, 2021, 23(01): 2902–2916.

    Article  Google Scholar 

  8. GUO F, WANG W G, SHEN Z Y, et al. Motion-aware rapid video saliency detection[J]. IEEE transactions on circuits and systems for video technology, 2020, 30(12): 4887–4898.

    Article  Google Scholar 

  9. CONG R, LEI J, FU H, et al. Video saliency detection via sparsity-based reconstruction and propagation[J]. IEEE transactions on image processing, 2019, 28(10): 4819–4831.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. HEILBRON F C, NIEBLES J C, GHANEM B. Fast temporal activity proposals for efficient detection of human actions in untrimmed videos[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27–30, 2016, Las Vegas, NV, USA. New York: IEEE, 2016: 1914–1923.

    Google Scholar 

  11. WU Q, QUO H, WU X, et al. Fast action localization based on spatio-temporal path search[C]//Proceeding of 2017 IEEE International Conference on Image Processing (ICIP), September 18–20, 2017, Bei**g, China. New York: IEEE, 2017: 3350–3354.

    Google Scholar 

  12. QIU J, WANG L, WANG Y, et al. Efficient proposals: scale estimation for object proposals in pedestrian detection tasks[J]. IEEE signal processing letters, 2020, 27(01): 855–859.

    Article  ADS  Google Scholar 

  13. PENG W, SHI J, ZHAO G. Spatial temporal graph deconvolutional network for skeleton-based human sction recognition[J]. IEEE signal processing letters, 2021, 28(01): 244–248.

    Article  ADS  Google Scholar 

  14. KUEHNE H, RICHARD A, GALL J. A hybrid RNN-HMM approach for weakly supervised temporal action segmentation[J]. IEEE transactions on pattern analysis and machine intelligence, 2020, 42(04): 765–779.

    Article  Google Scholar 

  15. LIU Z, WAQAS M, YANG J, et al. A multi-task CNN for maritime target detection[J]. IEEE signal processing letters, 2021, 28(01): 434–438.

    Article  ADS  Google Scholar 

  16. YU G, YUAN J. Fast action proposals for human action detection and search[C]//Proceeding of 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 8–10, 2015, Boston, USA. New York: IEEE, 2015: 1302–1311.

    Google Scholar 

  17. CHEN K, WANG J, YANG S, et al. Optimizing video object detection via a scale-time lattice[C]//Proceeding of 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 18–21, 2018, Salt Lake City, UT, USA. New York: IEEE, 2018: 7814–7823.

    Google Scholar 

  18. SHEN Z, LIU Z, LI J, et al. Object detection from scratch with deep supervision[J]. IEEE transactions on pattern analysis and machine intelligence, 2020, 42(02): 398–412.

    Article  Google Scholar 

  19. QU S, ZHANG H, WU W, et al. Symmetric pyramid attention convolutional neural network for moving object detection[J]. Signal, image and video processing, 2021, 15(08): 1747–1755.

    Article  Google Scholar 

  20. ZHANG Y Z, LI W X, YANG P L. Surveillance video motion segmentation based on the progressive spatio-temporal tunnel flow model[J]. Electronics letters, 2021, 57(13): 505–507.

    Article  ADS  Google Scholar 

  21. ZHUANG X T. Research on deep learning networks for small object detection based on multi-level feature fusion[D]. Nan**g: Nan**g University of Posts and Telecommunications, 2021.

    Google Scholar 

  22. VEZZANI R, CUCCHIARA R. Video surveillance online repository (VISOR): an integrated framework[J]. Multimedia tools and applications, 2010, 50(01): 359–380.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunzuo Zhang.

Additional information

Statements and Declarations

The authors declare that there are no conflicts of interest related to this article.

Document code: A

This work has been supported by the National Natural Science Foundation of China (Nos.61702347 and 62027801), the Natural Science Foundation of Hebei Province (Nos.F2022210007 and F2017210161), the Science and Technology Project of Hebei Education Department (Nos.ZD2022100 and QN2017132), and the Central Guidance on Local Science and Technology Development Fund (No.226Z0501G).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Guo, K. Proposals from binary tree and spatio-temporal tunnel for temporal segmentation of rough videos. Optoelectron. Lett. 18, 763–768 (2022). https://doi.org/10.1007/s11801-022-2103-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-022-2103-9

Navigation