Log in

Total curvature (TC) model and its alternating direction method of multipliers algorithm for noise removal

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

This paper develops a variational model for image noise removal using total curvature (TC), which is a high-order regularizer. The TC has the advantage of preserving image feature. Unfortunately, it also has the characteristics of nonlinear, non-convex and non-smooth. Consequently, the numerical computation with the curvature regularization is difficult. In order to conquer the computation problem, the proposed model is transformed into an alternating optimization problem by importing auxiliary variables. Furthermore, based on alternating direction method of multipliers, we design a fast numerical approximation iterative scheme for proposed model. Finally, numerous experiments are implemented to indicate the advantages of the proposed model in image edge preserving, image contrast and corners preserving. Meanwhile, the high computational efficiency of the designed model is verified by comparing with traditional models, including the total variation (TV) and total Laplace (TL) model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Song Ming Zhu, Qu Hong Song, Zhang Gui **ang, Tao Shu ** and ** Guang, Optoelectronics Letters 14, 226 (2018).

    Article  ADS  Google Scholar 

  2. Zha Zhiyuan, Liu **n, Zhou Ziheng, Huang **aohua, Shi **gang, Shang Zhenhong, Tang Lan, Bai Yechao, Wang Qiong and Zhang **nggan, Image Denoising via group Sparsity Residual Constraint, ar**v:1609.03302v5(2017).

    Google Scholar 

  3. Zhang K., Zuo W., Chen Y., Meng D. and Zhang L., IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society PP, 1 (2017).

  4. Buades Antoni, Coll Bartomeu and Morel Jean Michel, Siam Journal on Multiscale Modeling & Simulation 4, 490 (2006).

    Google Scholar 

  5. Shao Ling, Yan Ruomei, Li Xuelong and Yan Liu, IEEE Transactions on Cybernetics 44, 1001 (2014).

    Article  Google Scholar 

  6. Vega Miguel, Mateos Javier, Molina Rafael and Katsaggelos Aggelos K., Statistical Methodology 9, 19 (2016).

    Article  Google Scholar 

  7. Jordan Michael I., Ghahramani Zoubin, Jaakkola Tommi S. and Saul Lawrence K., Machine Learning 37, 183 (1999).

    Article  Google Scholar 

  8. Pardo E. and Kapolka M., Journal of Computational Physics 344, 339 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  9. Nie **angli, Qiao Hong, Zhang Bo and Huang **ayuan, IEEE Transactions on Image Processing 25, 2620 (2016).

    Article  MathSciNet  Google Scholar 

  10. Aubert Gilles and Kornprobst Pierre, Applied Intelligence 40, 291 (2006).

    Google Scholar 

  11. Bardeji Somayeh Gh., Figueiredo Isabel N. and Sousa Ercilia, Applied Numerical Mathematics 114, 188 (2017).

    Article  MathSciNet  Google Scholar 

  12. Liu Yang, He Chuanjiang and Wu Yongfei, Digital Signal Processing 78, 42 (2018).

    Article  MathSciNet  Google Scholar 

  13. Rudin Leonid I, Osher Stanley and Fatemi Emad, Physica D: Nonlinear Phenomena 60, 259 (1992).

    Article  Google Scholar 

  14. Chambolle Antonin and Pock Thomas, Mathematical Programming 159, 253 (2016).

    Article  MathSciNet  Google Scholar 

  15. Chan Raymond H., Liang Haixia, Wei Suhua, Nikolova Mila and Tai Xue Cheng, Inverse Problems & Imaging 9, 55 (2015).

    Article  MathSciNet  Google Scholar 

  16. Liu Jun, Huang Ting Zhu, Lv **ao Guang and Wang Si, Applied Mathematical Modelling 45, 516 (2017).

    Article  MathSciNet  Google Scholar 

  17. Duan **ming, Ward Wil O. C., Sibbett Luke, Pan Zhenkuan and Bai Li, Digital Signal Processing 69, 323 (2017).

    Article  Google Scholar 

  18. You Y. L. and Kaveh M., IEEE Transactions on Image Processing: A Publication of the IEEE Signal Processing Society 9, 1723 (2000).

    Article  Google Scholar 

  19. Reyes J. C. De Los, Schönlieb C. B. and Valkonen T., Journal of Mathematical Imaging & Vision 57, 1 (2017).

    Article  MathSciNet  Google Scholar 

  20. Hinterberger W. and Scherzer O., Computing 76, 109 (2006).

    Article  MathSciNet  Google Scholar 

  21. Duan **ming, Qiu Zhaowen, Lu Wenqi, Wang Guodong, Pan Zhenkuan and Bai Li, Digital Signal Processing 49, 162 (2016).

    Article  Google Scholar 

  22. Prasath V. B. Surya and Kalavathi P., Mixed Noise Removal Using Hybrid Fourth Order Mean Curvature Motion, Springer International Publishing,2016.

    Google Scholar 

  23. Zhu Wei, Tai Xue Cheng and Chan Tony, Inverse Problems & Imaging 7, 1409 (2017)

    Google Scholar 

  24. Nitzberg Mark and Mumford David, The 2.1-D Sketch, International Conference on Computer Vision, 1990.

    Google Scholar 

  25. Lu Wenqi, Duan **ming, Qiu Zhaowen, Pan Zhenkuan, Liu Ryan Wen and Bai Li, Mathematical Methods in the Applied Sciences 39, 4208 (2016)

    Article  MathSciNet  Google Scholar 

  26. Hore Alain and Ziou Djemel, Image Quality Metrics: PSNR vs. SSIM, International Conference on Pattern Recognition, 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao-xiang Huang  (黄宝香).

Additional information

This work has been supported by the National Natural Science Foundation of China (No.61602269), the China Postdoctoral Science Foundation (No.2015M571993), the Shandong Provincial Natural Science Foundation of China (No.ZR2017MD004), and the Qingdao Postdoctoral Application Research Funded Project.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, Yp., Huang, Bx., Wang, Yx. et al. Total curvature (TC) model and its alternating direction method of multipliers algorithm for noise removal. Optoelectron. Lett. 15, 217–223 (2019). https://doi.org/10.1007/s11801-019-8145-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-019-8145-y

Document code

Navigation