Log in

Reproducibility of splicer-based long-period fiber gratings for gain equalization

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

We fabricated long-period fiber gratings (LPFGs) using electric arc discharges. We observed that the fiber becomes slightly tapered due to longitudinal tension during the arc: this effect depends on the arc current and time length. We experimentally investigated how these characteristics can influence grating’s performances, especially in view of employing the LPFG as gain equalizer for an erbium-doped optical amplifier. As expected, we found that the spectral response of the grating depends on the period Λ, the intensity of the perturbation, the grating length and the type of mode-coupling induced. Since this last parameter cannot be estimated directly from the transmission spectra, we propose a method to determine the mode-coupling occurring in the device and to assess the index modulation induced by the electric arcs. This method combines both experimental and simulated data, and can be used to characterize LPFGs made-up by any method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol., 14 (1996), 58.

    Article  ADS  Google Scholar 

  2. A. M. Vengsarkar, J. R. Pedrazzini, J. B. Judkins, P. J. Lemaire, and N. S. Bergamo, Opt. Lett., 21 (1996), 336.

    ADS  Google Scholar 

  3. V. Grubsky and J. Feinberg, Opt. Lett., 25 (2000), 203

    ADS  Google Scholar 

  4. P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, Electron. Lett., 29 (1993), 1191.

    Article  Google Scholar 

  5. H. Patrick and S. L. Gilbert, Opt. Lett., 18 (1993), 1484.

    Article  ADS  Google Scholar 

  6. R. Kashyap, Fibre Bragg Gratings, Academic, New York, 1999.

    Google Scholar 

  7. C. Y. Lin, L. A. Wang, IEEE Photon. Technol. Lett., 13(2001), 332.

    Article  ADS  Google Scholar 

  8. F. Hindle, E. Fertein, C. Przygodzki, F. Durr, L. Paccou, R. Bocquet, P. Niay, H. G. Limberger, M. Douay, IEEE Photon. Technol. Lett., 16 (2004), 1861.

    Article  ADS  Google Scholar 

  9. D. D. Davis, T. K. Gaylord, E. N. Glytis, S. G. Kosinski, S. C. Mettler, A. M. Vengsarkar, Electron. Lett., 34 (1998), 302.

    Article  Google Scholar 

  10. I. K. Hwang, S. H. Yun and B. Y. Kim, Opt. Lett., 24 (1999), 1263.

    ADS  Google Scholar 

  11. P. Palai, M. N. Satyanarayan, Mini Das, K. Thyagarajan, B. P. Pal, Opt. Commun., 193 (2001), 181.

    Article  ADS  Google Scholar 

  12. S. G. Kosinski and A. M. Vengsarkar, OFC’98 Technical Digest, 2 (1998), 278.

    Google Scholar 

  13. I. K. Hwang, S. H. Yun and B. Y. Kim, Opt. Lett., 24 (1999), 1263.

    ADS  Google Scholar 

  14. H. Yamada and H. Hanausa, IEEE Photonics Technol. Lett., 6 (1994), 531.

    Article  ADS  Google Scholar 

  15. IFO_Gratings, Integrated & Fiber Optical Grating Design Software, Optiwave Corporation, Nepean, Canada, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cacciari, I., Brenci, M., Falciai, R. et al. Reproducibility of splicer-based long-period fiber gratings for gain equalization. Optoelectron. Lett. 3, 203–206 (2007). https://doi.org/10.1007/s11801-007-6195-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-007-6195-z

CLC numbers

Navigation