Log in

A Note on the Completeness of Generalized Eigenfunctions of the Hamiltonian of Reggeon Field Theory in Bargmann Space

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

The aim of the present paper is to review some old results of Intissar (Commun Math Phys 113:263–297, 1987) and to study some new spectral properties of the operator \(H_{\mu , \lambda } = \mu A^{*}A + i\lambda A^{*}(A + A^{*})A\) which characterizes the Reggeon field theory, where \(\mu \), \(\lambda \) are real parameters and \(i^{2} = -1\). \(\displaystyle {A\varphi := \frac{d\varphi }{dz}}\) and \(\displaystyle {A^{*}\varphi := z\varphi ; z = x + i y; (x, y) \in \mathbb {R}^{2}}\) are the annihilation and the creation operators, satisfying the commutation relation \([A, A^{*}] = I\) in Bargmann space \(\displaystyle { \mathcal {B} = \{\varphi : \mathbb {C} \longrightarrow \mathbb {C} \, \text {entire function} \,; \int _{\mathbb {C} }\mid \varphi (z)\mid ^{2}e^{-\mid z \mid ^{2}}dx dy < \infty \}}\). The Hamiltonian \(H_{\mu ,\lambda }\) is non-Hermitian with respect to the above standard scalar product. The domain of the adjoint and anti-adjoint parts are not included in each other, nor is the domain of their commutator. Hence the question arises, whether the eigenfunctions of \(H_{\mu , \lambda }\) form a complete basis? The main new results of this Note are the determination of the boundary conditions for the eigenvalue problem associated to \(H_{\mu ,\lambda }\) and the proof of the completeness of the basis mentioned in the question above by transforming \(H_{\mu ,\lambda }\) in the Hermitian form. In particular, \(H_{\mu ,\lambda }\) belongs to the class of pseudo-Hermitian Hamiltonians in the Mostafazadeh’s (J Math Phys 43(1):205–214, 2002 or Int J Geom Methods Mod Phys 7:1191–1306, 2010) sense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramovitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1968)

    Google Scholar 

  2. Agarwal, R.P., Regan, D.O.: Ordinary and Partial Differential Equations: With Special Functions, Fourier Series, and Boundary Value Problems. Springer, New York (2009)

    Book  Google Scholar 

  3. Aimar, M.-Th., Intissar, A., Paoli, J.-M.: Densité des vecteurs propres généralisés d’une classe d’opérateurs compacts non auto-ad joints et applications. Commun. Math. Phys. 156, 169–177 (1993)

    Article  MATH  Google Scholar 

  4. Aimar, M.-Th., Intissar, A., Paoli, J.-M.: Crit\(\grave{e}\)res de Complétude des Vecteurs Propres Généralisés d’une Classe d’Opérateurs Non Auto-adjoints Compacts ou á Résolvante Compacte et Applications. Publ. RIMS Kyoto Univ. 32, 191–205 (1996)

    Article  MATH  Google Scholar 

  5. Ando, T., Zerner, M.: Sur une valeur propre d’un opérateur. Commun. Math. Phys. 93, 123–139 (1984)

    Article  MATH  Google Scholar 

  6. Bargmann, V.: On a Hilbert space of analytic functions and an associated integral transform I. Commun. Pure Appl. Math. 14, 187–214 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  7. Batola, F.: Une généralisation d’une formule de Meixner-tricomi. Can. J. Math. XXXIV(2), 411–422 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bender, C.M., Orszag, S.A.: Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill Book Company, New York (1978)

    MATH  Google Scholar 

  9. Bateman, H., Erdelyi, A.: Higher Transcendental Functions, vol. 1. McGraw-Hill Book Company, New York (1953)

    MATH  Google Scholar 

  10. Caliceti, E., Graffi, S., Maioli, M.: Perturbation theory of odd anharmonic oscillators. Commun. Math. Phys. 75(1), 51–66 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  11. Decarreau, A., Emamirad, H., Intissar, A.: Chaoticité de l’opérateur de Gribov dans l’espace de Bargmann. C. R. Acad. Sci. Paris Sér. I Math. 331, 751–756 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dorey, P., Dunning, C., Tateo, R.: Spectral equivalences, Bethe ansatz equations, and reality properties in PT-symmetric quantum mechanics. J. Phys. A Math. Gen. 34(28), 56–79 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Geymonat, G., Grisvard, P.: Expansions on generalized eigenvectors of operators arising in the theory of elasticity. Differ. Integr. Equ. 4(3), 459–481 (1991)

    MathSciNet  MATH  Google Scholar 

  14. Gohberg, I.C., Krein, M.G.: Introduction to the Theory of Linear Non-self-Adjoint Operators, vol. 18. American Mathematical Society, Providence (1969)

    Google Scholar 

  15. Goldberg, S.: Unbounded Linear Operators. Mc Graw Hill, New York (1966)

    MATH  Google Scholar 

  16. Hille, E.: Ordinary Differential Equations in the Complex Domain. Dover Publications Inc, New York (1997)

    MATH  Google Scholar 

  17. Ince, E.L.: Ordinary Differential Equations. Dover, New York (1956)

    Google Scholar 

  18. Intissar, A., Le Bellac, M., Zerner, M.: Properties of the Hamiltonian of Reggeon field theory. Phys. Lett. B 113, 487–489 (1982)

    Article  Google Scholar 

  19. Intissar, A.: Etude spectrale d’une famille d’opérateurs non-symétriques intervenant dans la théorie des champs de Reggeons. Commun. Math. Phys. 113, 263–297 (1987)

    Article  MATH  Google Scholar 

  20. Intissar, A.: Analyse de Scattering d’un opérateur cubique de Heun dans l’espace de Bargmann. Commun. Math. Phys. 199, 243–256 (1998)

    Article  MATH  Google Scholar 

  21. Intissar, A.: Spectral analysis of non-selfadjoint Jacobi–Gribov operator and asymptotic analysis of its generalized eigenvectors. Adv. Math. (China) 44(3), 335–353 (2015). https://doi.org/10.11845/sxjz.2013117b

    Article  MathSciNet  MATH  Google Scholar 

  22. Intissar, A., Intissar, J.K.: On chaoticity of the sum of chaotic shifts with their adjoints in Hilbert space and applications to some weighted shifts acting on some Fock–Bargmann spaces. Complex Anal. Oper. Theory 11(3), 491–505 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kristensson, G.: Second Order Differential Equations: Special Functions and Their Classification. Springer, New York (2010)

    Book  MATH  Google Scholar 

  24. Lidskii, V.B.: Summability of series in the principal vectors of non-self-adjoint operators. In: American Mathematical Society Translation Series 2, vol. 40. American Mathematical Society, Providence (1964)

  25. Maroni, P.: Biconfluent Heun equation. In: Ronveau, A. (ed.) Heun’s Differential Equations, pp. 191–249. Oxford University Press, Oxford (1995)

    Google Scholar 

  26. Morse, P.M., Feshbach, H.: Methods of Theoretical Physics, I (International Series in Pure and Applied Physics). McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  27. Mostafazadeh, A.: Pseudo-hermiticity versus PT symmetry: the necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian. J. Math. Phys. 43(1), 205–214 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mostafazadeh, A.: Pseudo-Hermitian representation of quantum mechanics. ar**v:0810.5643v4 [quant-ph] 7 Feb 2011 [Journal reference: Int. J. Geom. Methods Mod. Phys. 7, 1191–1306 (2010)]

  29. Novak, R.: On the pseudospectrum of the harmonic oscillator with imaginary cubic potential. Int. J. Theor. Phys. 54, 4142–53 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Roseau, A.: On the solutions of the biconfluent Heun equations. Bull. Belg. Math. Soc. Simon Stevin 9(3), 321–342 (2002). https://doi.org/10.36045/bbms/1102715058

    Article  MathSciNet  MATH  Google Scholar 

  31. Yosida, K.: Lectures on Differential and Integral Equations. Dover Publications, New York (1991)

    MATH  Google Scholar 

Download references

Acknowledgements

The author thank the referee for valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

The main new results of this Note are the determination of the boundary conditions for the eigenvalue problem associated to Hamiltonian of Reggeon field Theory and the proof of the completeness of its generalized eigenfunctions. This operator acting on Bargmann space belongs to the class of pseudo-Hermitian Hamiltonians in the Mostafazadeh’s sense. Abdelkader INTISSAR

Corresponding author

Correspondence to Abdelkader Intissar.

Ethics declarations

Conflic of interest

The authors declare no competing interests.

Additional information

Communicated by Petr Siegl.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Spectral Theory and Operators in Mathematical Physics” edited by Jussi Behrndt, Fabrizio Colombo and Sergey Naboko.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Intissar, A. A Note on the Completeness of Generalized Eigenfunctions of the Hamiltonian of Reggeon Field Theory in Bargmann Space. Complex Anal. Oper. Theory 17, 90 (2023). https://doi.org/10.1007/s11785-023-01395-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11785-023-01395-z

Keywords

Navigation