Log in

Strong approximation of fractional Sobolev maps

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

Brezis and Mironescu have announced several years ago that for a compact manifold \({N^n \subset \mathbb{R}^\upsilon}\) and for real numbers 0 < s < 1 and \({1 \leq p < \infty}\), the class \({C^\infty(\overline{Q}^m;N^n)}\) of smooth maps on the cube with values into N n is dense with respect to the strong topology in the Sobolev space \({W^{s,p}(Q^m;N^n)}\) when the homotopy group \({\pi_{{\lfloor}sp{\rfloor}}(N^n)}\) of order \({\lfloor sp \rfloor}\) is trivial. The proof of this beautiful result is long and rather involved. Under the additional assumption that N n is \({\lfloor sp \rfloor}\) simply connected, we give a shorter and different proof of their result. Our proof for \({sp \geq 1}\) is based on the existence of a retraction of \({\mathbb{R}^\upsilon}\) onto Nn except for a small subset in the complement of N n and on the Gagliardo–Nirenberg interpolation inequality for maps in \({W^{1,q} \cap L^\infty}\). In contrast, the case \({sp < 1}\) relies on the density of step functions on cubes in W s,p.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Banyaga, The structure of classical diffeomorphism groups. Mathematics and Its Applications 400, Kluwer Academic Publishers Group, Dordrecht, 1997.

  2. Bethuel F.: The approximation problem for Sobolev maps between two manifolds. Acta Math. 167, 153–206 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bethuel F.: Approximations in trace spaces defined between manifolds. Nonlinear Anal. 24, 121–130 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bethuel F., Zheng X.M.: Density of smooth functions between two manifolds in Sobolev spaces. J. Funct. Anal. 80, 60–75 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bourdaud G.: Ondelettes et espaces de Besov. Rev. Mat. Iberoamericana 11, 477–512 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bourgain J., Brezis H., Mironescu P.: H 1/2 maps with values into the circle: Minimal connections, lifting, and the Ginzburg-Landau equation. Publ. Math. Inst. Hautes Études Sci. 99, 1–115 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bourgain J., Brezis H., Mironescu P.: Lifting in Sobolev spaces. J. Anal. Math. 80, 37–86 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bousquet P., Ponce A.C., Van Schaftingen J.: Density of smooth maps for fractional Sobolev spaces W s, p into simply connected manifolds when s ≥ 1. Confluentes Math. 5, 3–22 (2013)

    MathSciNet  Google Scholar 

  9. P. Bousquet, A. C. Ponce and J. Van Schaftingen, Strong density for higher order Sobolev spaces into compact manifolds. To appear.

  10. Brezis H., Mironescu P.: Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces. J. Evol. Equ. 1, 387–404 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Brezis H., Nirenberg L.: Degree theory and BMO. I. Compact manifolds without boundaries. Selecta Math. (N.S.) 1, 197–263 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  12. Escobedo M.: Some remarks on the density of regular map**s in Sobolev classes of S M-valued functions. Rev. Mat. Univ. Complut. Madrid 1, 127–144 (1988)

    MATH  MathSciNet  Google Scholar 

  13. Gagliardo E.: Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili. Rend. Semin. Mat. Univ. Padova 27, 284–305 (1957)

    MATH  MathSciNet  Google Scholar 

  14. Giaquinta M., Mucci D.: Density results for the W 1/2 energy of maps into a manifold. Math. Z. 251, 535–549 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hajłasz P.: Approximation of Sobolev map**s. Nonlinear Anal. 22, 1579–1591 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hang F., Lin F.-H.: Topology of Sobolev map**s. II Acta Math. 191, 55–107 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hardt R., Lin F.-H.: Map**s minimizing the L p norm of the gradient. Comm. Pure Appl. Math. 40, 555–588 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hatcher A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  19. M. W. Hirsch, Differential Topology. Grad. Texts in Math. 33, Springer-Verlag, New York, 1994.

  20. Marcus M., Mizel V.J.: Every superposition operator map** one Sobolev space into another is continuous. J. Funct. Anal. 33, 217–229 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  21. Maz’ya V., Shaposhnikova T.: An elementary proof of the Brezis and Mironescu theorem on the composition operator in fractional Sobolev spaces. J. Evol. Equ. 2, 113–125 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Maz’ya V., Shaposhnikova T.: On the Brezis and Mironescu conjecture concerning a Gagliardo-Nirenberg inequality for fractional Sobolev norms. J. Math. Pures Appl. 9(81), 877–884 (2002)

    Article  MathSciNet  Google Scholar 

  23. P. Mironescu, On some properties of S 1 -valued fractional Sobolev spaces. In: Noncompact Problems at the Intersection of Geometry, Analysis, and Topology, Contemp. Math. 350, Amer. Math. Soc., Providence, RI, 2004, 201–207.

  24. P. Mironescu, Sobolev maps on manifolds: Degree, approximation, lifting. In: Perspectives in Nonlinear Partial Differential Equations, Contemp. Math. 446, Amer. Math. Soc., Providence, RI, 2007, 413–436.

  25. Mucci D.: Strong density results in trace spaces of maps between manifolds. Manuscripta Math. 128, 421–441 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. Rivière T.: Dense subsets of H 1/2(S 2, S 1). Ann. Global Anal. Geom. 18, 517–528 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  27. Schoen R., Uhlenbeck K.: Boundary regularity and the Dirichlet problem for harmonic maps. J. Differential Geom. 18, 253–268 (1983)

    MATH  MathSciNet  Google Scholar 

  28. J. W. Vick, Homology Theory: An introduction to Algebraic Topology. 2nd ed., Grad. Texts in Math. 145, Springer-Verlag, New York, 1994.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Augusto C. Ponce.

Additional information

A l’infatigable Haïm Brezis pour ses 70 ans, avec admiration

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bousquet, P., Ponce, A.C. & Van Schaftingen, J. Strong approximation of fractional Sobolev maps. J. Fixed Point Theory Appl. 15, 133–153 (2014). https://doi.org/10.1007/s11784-014-0172-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11784-014-0172-5

Mathematics Subject Classification

Keywords

Navigation