Log in

Sobolev spaces, Lebesgue points and maximal functions

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this note, we study boundedness of a large class of maximal operators in Sobolev spaces that includes the spherical maximal operator. We also study the size of the set of Lebesgue points with respect to convergence associated with such maximal operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bourgain J.: Averages in the plane over convex curves and maximal operators. J. Anal. Math. 47, 69–85 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions. Stud. Adv. Math., CRC Press, Boca Raton, FL, 1992.

  3. H. Federer and W. P. Ziemer, The Lebesgue set of a function whose distribution derivatives are p-th power summable. Indiana Univ. Math. J. 22 (1972/73), 139–158.

  4. Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order. 2nd ed.. Springer, Berlin (1983)

    Book  Google Scholar 

  5. L. Grafakos, Classical Fourier Analysis. 2nd. ed., Grad. Texts in Math. 249, Springer, New York, 2008.

  6. P. Hajłasz, Sobolev inequalities, truncation method, and John domains. In: Papers on Analysis, Rep. Univ. Jyväskylä Dep. Math. Stat. 83, Univ. Jyväskylä, 2001, 109–126.

  7. P. Hajłasz and Z. Liu, Maximal potentials, maximal singular integrals, and the spherical maximal function. Proc. Amer. Math. Soc., to appear.

  8. Hajłasz P., Onninen J.: On boundedness of maximal functions in Sobolev spaces. Ann. Acad. Sci. Fenn. Math. 29, 167–176 (2004)

    MathSciNet  MATH  Google Scholar 

  9. Kilpeläinen T.: A remark on the uniqueness of quasi continuous functions. Ann. Acad. Sci. Fenn. Math. 23, 261–262 (1998)

    MathSciNet  MATH  Google Scholar 

  10. Kinnunen J.: The Hardy-Littlewood maximal function of a Sobolev function. Israel J. Math. 100, 117–124 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kinnunen J., Korte R., Shanmugalingam N., Tuominen H.: Lebesgue points and capacities via the boxing inequality in metric spaces. Indiana Univ. Math. J. 57, 401–430 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kinnunen J., Latvala V.: Lebesgue points for Sobolev functions on metric spaces. Rev. Mat. Iberoam. 18, 685–700 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kinnunen J., Saksman E.: Regularity of the fractional maximal function. Bull. Lond. Math. Soc. 35, 529–535 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Malý J., Swanson D., Ziemer W.P.: The co-area formula for Sobolev map**s. Trans. Amer. Math. Soc. 355, 477–492 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. V. Maz’ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations. Second, revised and augmented edition. Grundlehren Math. Wiss. 342, Springer, Heidelberg, 2011.

  16. Meyers N.G., Ziemer W.P.: Integral inequalities of Poincar´e and Wirtinger type for BV functions. Amer. J. Math. 99, 1345–1360 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  17. E. M. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series 30, Princeton University Press, Princeton, NJ, 1970

  18. Stein E.M.: Maximal functions. I. Spherical means. Proc. Natl. Acad. Sci. USA 73, 2174–2175 (1976)

    Article  MATH  Google Scholar 

  19. E. M. Stein, Harmonic analysis: Real-variable methods, orthogonality, and oscillatory integrals. Princeton Mathematical Series 43, Monographs in Harmonic Analysis III, Princeton University Press, Princeton, NJ, 1993.

  20. W. P. Ziemer, Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation. Grad. Texts in Math. 120, Springer, New York, 1989.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Hajłasz.

Additional information

To Professor Bogdan Bojarski

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hajłasz, P., Liu, Z. Sobolev spaces, Lebesgue points and maximal functions. J. Fixed Point Theory Appl. 13, 259–269 (2013). https://doi.org/10.1007/s11784-013-0111-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11784-013-0111-x

Mathematics Subject Classification

Keywords

Navigation