Log in

Preparation of graphene oxide/polyiminodiacetic acid resin as a high-performance adsorbent for Cu(II)

Cu(II)高效吸附剂氧化石墨烯/聚亚胺二乙酸树脂的制备

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Heavy metal-contaminated water has become a great challenge for aquatic ecosystems. Herein, a versatile composite (IRC 748-GO) adsorbent was prepared by modifying graphene oxide (GO) with Amberlite IRC 748 resin. The batch and dynamic adsorption experiments of Cu2+ on the IRC 748-GO composite were conducted, and the results showed that the novel adsorbents have a high adsorption capacity compared to the pristine GO. The adsorption process was consistent with the pseudo-second-order kinetic model and the equilibrium data were well fitted to the Langmuir isotherm model, and the maximum uptake of Cu2+ was 127.22 mg/g. The adsorption mechanism was investigated using FT-IR, SEM, XPS, and adsorption isotherms, which revealed that the carboxyl groups in IRC 748-GO composite could effectively chelate Cu2+. Overall, the IRC 748-GO composite exhibited important advantages such as great specific surface area and stability, as well as high adsorption capacity, which provides broad application prospects for efficiently remediating wastewater containing heavy metals.

摘要

重金属污染已成为水生生态系统面临的巨大挑战。本文采用Amberlite IRC 748 树脂对氧化石墨 烯(GO)进行改性,制备了一种多功能复合吸附材料(IRC 748-GO)。通过静态吸附和动态吸附实验考察 了IRC 748-GO 复合材料对Cu2+ 离子的吸附行为,结果表明该吸附过程符合准二级动力学模型和 Langmuir 模型,Cu2+ 的饱和吸附量达到127.22 mg/g,IRC 748-GO 复合材料对Cu2+ 的吸附能力**于氧化 石墨烯。采用FT-IR、SEM、XPS 和吸附等温线测定分析了吸附机理,结果表明IRC 748-GO 复合材料 中的羧基能有效螯合Cu2+ 离子。IRC 748-GO 复合材料具有比表面积大、稳定性好、吸附能力**等特 点,可用于重金属废水处理。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

References

  1. DUAN Guang-yu, LI **n-tong, MA **n, et al. High-efficiency adsorption removal for Cu(II) and Ni(II) using a novel acylamino dihydroxamic acid chelating resin [J]. Science of the Total Environment, 2023, 864: 160984. DOI: https://doi.org/10.1016/j.scitotenv.2022.160984.

    Article  Google Scholar 

  2. WEI Bo-han, XUE Zhi-yuan, YANG Yu-dong, et al. Preparation of tungsten slag-bentonite particle adsorbent and its adsorption performance for lead ion from wastewater [J]. Journal of Central South University, 2023, 30(6): 1841–1855. DOI: https://doi.org/10.1007/s11771-023-5351-3.

    Article  Google Scholar 

  3. PEI Jun-xian, HUANG Lu, JIANG Hai-feng, et al. Inhibitory effect of hydrogen ion on the copper ions separation from acid solution across graphene oxide membranes [J]. Separation and Purification Technology, 2019, 210: 651–658. DOI: https://doi.org/10.1016/j.seppur.2018.08.059.

    Article  Google Scholar 

  4. ZIA Q, TABASSUM M, LU Zi-han, et al. Porous poly(L-lactic acid)/chitosan nanofibres for copper ion adsorption [J]. Carbohydrate Polymers, 2020, 227: 115343. DOI: https://doi.org/10.1016/j.carbpol.2019.115343.

    Article  Google Scholar 

  5. LUO Yue-yue, LIN **ao, LICHTFOUSE E, et al. Conversion of waste plastics into value-added carbon materials [J]. Environmental Chemistry Letters, 2023, 21(6): 3127–3158. DOI: https://doi.org/10.1007/s10311-023-01638-7.

    Article  Google Scholar 

  6. WANG Shu-bin, LI Jie, NARITA H, et al. Solvent extraction equilibrium modeling for the separation of ammonia, nickel (II), and copper(II) from the loaded LIX84-I [J]. Minerals Engineering, 2021, 172: 107132. DOI: https://doi.org/10.1016/j.mineng.2021.107132.

    Article  Google Scholar 

  7. JIANG Chun-lu, WANG Rui, CHEN **ng, et al. Preparation of chitosan modified fly ash under acid condition and its adsorption mechanism for Cr(VI) in water [J]. Journal of Central South University, 2021, 28(6): 1652–1664. DOI: https://doi.org/10.1007/s11771-021-4724-8.

    Article  Google Scholar 

  8. SHI Tong-shan, JIANG Feng, WANG Pan, et al. Deep purification of As(V) in drinking water by silica gel loaded with FeOOH and MnO2 [J]. Journal of Central South University, 2021, 28(6): 1692–1706. DOI: https://doi.org/10.1007/s11771-021-4727-5.

    Article  Google Scholar 

  9. YU Bao-wei, XU **g, LIU Jia-hui, et al. Adsorption behavior of copper ions on graphene oxide-chitosan aerogel [J]. Journal of Environmental Chemical Engineering, 2013, 1(4): 1044–1050. DOI: https://doi.org/10.1016/j.jece.2013.08.017.

    Article  Google Scholar 

  10. KONG Qiao-**, PREIS S, LI Le-li, et al. Relations between metal ion characteristics and adsorption performance of graphene oxide: A comprehensive experimental and theoretical study [J]. Separation and Purification Technology, 2020, 232: 115956. DOI: https://doi.org/10.1016/j.seppur.2019.115956.

    Article  Google Scholar 

  11. WU Shui-sheng, LAN Dong-hui, ZHANG **ao-wen, et al. Microwave hydrothermal synthesis, characterization and excellent uranium adsorption properties of CoFe2O4@rGO nanocomposite [J]. Journal of Central South University, 2021, 28(7): 1955–1965. DOI: https://doi.org/10.1007/s11771-021-4744-4.

    Article  Google Scholar 

  12. YAN Han, YANG Hu, LI Ai-min, et al. pH-tunable surface charge of chitosan/graphene oxide composite adsorbent for efficient removal of multiple pollutants from water [J]. Chemical Engineering Journal, 2016, 284: 1397–1405. DOI: https://doi.org/10.1016/j.cej.2015.06.030.

    Article  Google Scholar 

  13. ARSHAD F, SELVARAJ M, ZAIN J, et al. Polyethylenimine modified graphene oxide hydrogel composite as an efficient adsorbent for heavy metal ions [J]. Separation and Purification Technology, 2019, 209: 870–880. DOI: https://doi.org/10.1016/j.seppur.2018.06.035.

    Article  Google Scholar 

  14. EINOLLAHI PEER F, BAHRAMIFAR N, YOUNESI H. Removal of Cd (II), Pb (II) and Cu (II) ions from aqueous solution by polyamidoamine dendrimer grafted magnetic graphene oxide nanosheets [J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 87: 225–240. DOI: https://doi.org/10.1016/j.jtice.2018.03.039.

    Article  Google Scholar 

  15. LIN Li-chun, JUANG R S. Ion-exchange equilibria of Cu(II) and Zn(II) from aqueous solutions with Chelex 100 and Amberlite IRC 748 resins [J]. Chemical Engineering Journal, 2005, 112(1–3): 211–218. DOI: https://doi.org/10.1016/j.cej.2005.07.009.

    Article  Google Scholar 

  16. YU Zhi-hui, QI Tao, QU **g-kui, et al. Removal of Ca(II) and Mg(II) from potassium chromate solution on Amberlite IRC 748 synthetic resin by ion exchange [J]. Journal of Hazardous Materials, 2009, 167(1–3): 406–412. DOI: https://doi.org/10.1016/j.jhazmat.2008.12.140.

    Article  Google Scholar 

  17. BECERRIL H A, MAO Jie, LIU Zun-feng, et al. Evaluation of solution-processed reduced graphene oxide films as transparent conductors [J]. ACS Nano, 2008, 2(3): 463–470. DOI: https://doi.org/10.1021/nn700375n.

    Article  Google Scholar 

  18. SOLEIMANI K, DADKHAH TEHRANI A, ADELI M. Preparation of new GO-based slide ring hydrogel through a convenient one-pot approach as methylene blue absorbent [J]. Carbohydrate Polymers, 2018, 187: 94–101. DOI: https://doi.org/10.1016/j.carbpol.2018.01.084.

    Article  Google Scholar 

  19. ALI HAIDRY A, WANG Zhe, FATIMA Q, et al. Thermally reduced graphene oxide showing n- to p-type electrical response inversion with water adsorption [J]. Applied Surface Science, 2020, 531: 147285. DOI: https://doi.org/10.1016/j.apsusc.2020.147285.

    Article  Google Scholar 

  20. LI Yin-ta, JU Wen-ming, YANG Lang, et al. Adsorption behaviors and mechanism of graphene oxide for silver complex anion removal [J]. Applied Surface Science, 2020, 529: 147112. DOI: https://doi.org/10.1016/j.apsusc.2020.147112.

    Article  Google Scholar 

  21. ZHANG Yong, XIONG Shan-xin, WANG Yu-yun, et al. Postcomposition preparation and supercapacitive properties of polyaniline nanotube/graphene oxide composites with interfacial electrostatic interaction [J]. Journal of Electronic Materials, 2020, 49(7): 4076–4084. DOI: https://doi.org/10.1007/s11664-020-08128-4.

    Article  Google Scholar 

  22. LV Feng-yan, XIONG Shan-xin, ZHANG Jiao-jiao, et al. Enhanced electrochromic properties of 2, 6-diaminoanthraquinone and 1, 3, 5-triformylresorcinol (DAAQ-TFP) covalent organic framework/functionalized graphene oxide composites containing anthraquinone active unit [J]. Electrochimica Acta, 2021, 398: 139301. DOI: https://doi.org/10.1016/j.electacta.2021.139301.

    Article  Google Scholar 

  23. LI Ke-ding, LEI Yu-qing, LIAO Jun, et al. A facile synthesis of graphene oxide/locust bean gum hybrid aerogel for water purification [J]. Carbohydrate Polymers, 2021, 254: 117318. DOI: https://doi.org/10.1016/j.carbpol.2020.117318.

    Article  Google Scholar 

  24. XU **g, WANG Li, ZHU Yong-fa. Decontamination of bisphenol A from aqueous solution by graphene adsorption [J]. Langmuir, 2012, 28(22): 8418–8425. DOI: https://doi.org/10.1021/la301476.

    Article  Google Scholar 

  25. LI **g, WU Ya-lin, BAI Hua-hua, et al. Highly efficient adsorption and mechanism of alkylphenols on magnetic reduced graphene oxide [J]. Chemosphere, 2021, 283: 131232. DOI: https://doi.org/10.1016/j.chemosphere.2021.131232.

    Article  Google Scholar 

  26. ZHANG Xue-qin, SUN Tong, QIU Bao-wei, et al. Investigation on interlaminar behavior of different morphology GO structured carbon fiber reinforced epoxy composites [J]. Composites Part B: Engineering, 2022, 230: 109492. DOI: https://doi.org/10.1016/j.compositesb.2021.109492.

    Article  Google Scholar 

  27. QIAO Di-si, LI Ze-hao, DUAN **-you, et al. Adsorption and photocatalytic degradation mechanism of magnetic graphene oxide/ZnO nanocomposites for tetracycline contaminants [J]. Chemical Engineering Journal, 2020, 400: 125952. DOI: https://doi.org/10.1016/j.cej.2020.125952.

    Article  Google Scholar 

  28. PENG Gui-long, DENG Shu-bo, LIU Feng-lei, et al. Superhigh adsorption of nickel from electroplating wastewater by raw and calcined electroplating sludge waste [J]. Journal of Cleaner Production, 2020, 246: 118948. DOI: https://doi.org/10.1016/j.jclepro.2019.118948.

    Article  Google Scholar 

  29. BIAN Kai, HU Bo, JIANG Hong-ru, et al. Is the presence of Cu(II) and p-benzoquinone a challenge for the removal of microplastics from landfill leachate? [J]. Science of the Total Environment, 2022, 851: 158395. DOI: https://doi.org/10.1016/j.scitotenv.2022.158395.

    Article  Google Scholar 

  30. PENG Cong, CHAI Li-yuan, SONG Yu-xia, et al. Thermodynamics, kinetics and mechanism analysis of Cu(II) adsorption by in situ synthesized struvite crystal [J]. Journal of Central South University, 2018, 25(5): 1033–1042. DOI: https://doi.org/10.1007/s11771-018-3803-y.

    Article  Google Scholar 

  31. QIANG Li-wen, CHEN Meng, ZHU Ling-yan, et al. Facilitated bioaccumulation of perfluorooctanesulfonate in common carp (Cyprinus carpio) by graphene oxide and remission mechanism of fulvic acid [J]. Environmental Science & Technology, 2016, 50(21): 11627–11636. DOI: https://doi.org/10.1021/acs.est.6b02100.

    Article  Google Scholar 

  32. GU Cheng, KARTHIKEYAN K G. Interaction of tetracycline with aluminum and iron hydrous oxides [J]. Environmental Science & Technology, 2005, 39(8): 2660–2667. DOI: https://doi.org/10.1021/es048603o.

    Article  Google Scholar 

  33. FREUNDLICH H. Über die adsorption in lösungen [J]. Zeitschrift Für Physikalische Chemie, 1907, 57U(1): 385–470. DOI: https://doi.org/10.1515/zpch-1907-5723.

    Article  Google Scholar 

  34. LANGMUIR I. The adsorption of gases on plane surfaces of glass, mica and platinum [J]. Journal of the American Chemical Society, 1918, 40(9): 1361–1403. DOI: https://doi.org/10.1021/ja02242a004.

    Article  Google Scholar 

  35. NONGBE M C, BRETEL G, EKOU T, et al. Cellulose paper grafted with polyamines as powerful adsorbent for heavy metals [J]. Cellulose, 2018, 25(7): 4043–4055. DOI: https://doi.org/10.1007/s10570-018-1833-0.

    Article  Google Scholar 

  36. HUANG Qi-su, WU Wei, WEI Wei, et al. Highly-efficient Pb2+ removal from water by novel K2W4O13 nanowires: Performance, mechanisms and DFT calculation [J]. Chemical Engineering Journal, 2020, 381: 122632. DOI: https://doi.org/10.1016/j.cej.2019.122632.

    Article  Google Scholar 

  37. LENG Yan-qiu, GUO Wei-lin, SU Sheng-nan, et al. Removal of antimony(III) from aqueous solution by graphene as an adsorbent [J]. Chemical Engineering Journal, 2012, 211–212: 406–411. DOI: https://doi.org/10.1016/j.cej.2012.09.078.

    Article  Google Scholar 

  38. ZHANG Fan, WANG Bo, HE Sheng-fu, et al. Preparation of graphene-oxide/polyamidoamine dendrimers and their adsorption properties toward some heavy metal ions [J]. Journal of Chemical & Engineering Data, 2014, 59(5): 1719–1726. DOI: https://doi.org/10.1021/je500219e.

    Article  Google Scholar 

  39. GUO **ao-yao, DU Bin, WEI Qin, et al. Synthesis of amino functionalized magnetic graphenes composite material and its application to remove Cr(VI), Pb(II), Hg(II), Cd(II) and Ni (II) from contaminated water [J]. Journal of Hazardous Materials, 2014, 278: 211–220. DOI: https://doi.org/10.1016/j.jhazmat.2014.05.075.

    Article  Google Scholar 

  40. WU Zheng-guo, DENG Wei-jie, ZHOU Wei, et al. Novel magnetic polysaccharide/graphene oxide @Fe3O4 gel beads for adsorbing heavy metal ions [J]. Carbohydrate Polymers, 2019, 216: 119–128. DOI: https://doi.org/10.1016/j.carbpol.2019.04.020.

    Article  Google Scholar 

  41. MODI A, BELLARE J. Zeolitic imidazolate framework-67/carboxylated graphene oxide nanosheets incorporated polyethersulfone hollow fiber membranes for removal of toxic heavy metals from contaminated water [J]. Separation and Purification Technology, 2020, 249: 117160. DOI: https://doi.org/10.1016/j.seppur.2020.117160.

    Article  Google Scholar 

  42. VERMA M, LEE I, OH J, et al. Synthesis of EDTA-functionalized graphene oxide-chitosan nanocomposite for simultaneous removal of inorganic and organic pollutants from complex wastewater [J]. Chemosphere, 2022, 287: 132385. DOI: https://doi.org/10.1016/j.chemosphere.2021.132385.

    Article  Google Scholar 

  43. JIN Tao, KONG Fan-mei, ZHAO Pei-wen. Graphene oxide aerogel assembled by dimethylaminopropylamine/N-isopropylethylenediamine for the removal of copper ions [J]. Chemosphere, 2021, 263: 128273. DOI: https://doi.org/10.1016/j.chemosphere.2020.128273.

    Article  Google Scholar 

  44. TU Yong-hui, REN Long-fei, LIN Yuan-xin, et al. Adsorption of antimonite and antimonate from aqueous solution using modified polyacrylonitrile with an ultrahigh percentage of amidoxime groups [J]. Journal of Hazardous Materials, 2020, 388: 121997. DOI: https://doi.org/10.1016/j.jhazmat.2019.121997.

    Article  Google Scholar 

  45. ALI SIYAL A, SHAMSUDDIN M R, KHAN M I, et al. A review on geopolymers as emerging materials for the adsorption of heavy metals and dyes [J]. Journal of Environmental Management, 2018, 224: 327–339. DOI: https://doi.org/10.1016/j.jenvman.2018.07.046.

    Article  Google Scholar 

  46. TABELIN C B, CORPUZ R D, IGARASHI T, et al. Acid mine drainage formation and arsenic mobility under strongly acidic conditions: Importance of soluble phases, iron oxyhydroxides/oxides and nature of oxidation layer on pyrite [J]. Journal of Hazardous Materials, 2020, 399: 122844. DOI: https://doi.org/10.1016/j.jhazmat.2020.122844.

    Article  Google Scholar 

  47. KONG **ang-feng, YANG Bin, XIONG Heng, et al. Selective removal of heavy metal ions from aqueous solutions with surface functionalized silica nanoparticles by different functional groups [J]. Journal of Central South University, 2014, 21(9): 3575–3579. DOI: https://doi.org/10.1007/s11771-014-2338-0.

    Article  Google Scholar 

  48. HUANG Yan-jun, WU Hai-ling, SHAO Tai-kang, et al. Enhanced copper adsorption by DTPA-chitosan/alginate composite beads: Mechanism and application in simulated electroplating wastewater [J]. Chemical Engineering Journal, 2018, 339: 322–333. DOI: https://doi.org/10.1016/j.cej.2018.01.071.

    Article  Google Scholar 

  49. WANG Chong-qing, YANG Jia-peng, HUANG Rong, et al. Mechanical activation of natural chalcopyrite for improving heterogeneous Fenton degradation of tetracycline [J]. Journal of Central South University, 2022, 29(12): 3884–3895. DOI: https://doi.org/10.1007/s11771-022-5199-y.

    Article  Google Scholar 

  50. XIAO **g-**g, YAO Chen, WU Ya-xin, et al. Adsorption and flotation mechanism of a ketoxime-dithiocarbonate surfactant to chalcopyrite [J]. Journal of Central South University, 2022, 29(12): 3847–3857. DOI: https://doi.org/10.1007/s11771-022-5217-0.

    Article  Google Scholar 

  51. YU Shu-jun, WANG **ang-xue, AI Yue-jie, et al. Spectroscopic and theoretical studies on the counterion effect of Cu(ii) ion and graphene oxide interaction with titanium dioxide [J]. Environmental Science: Nano, 2016, 3(6): 1361–1368. DOI: https://doi.org/10.1039/C6EN00297H.

    Google Scholar 

  52. HUANG Rong, YANG Jia-peng, CAO Yi-jun, et al. Peroxymonosulfate catalytic degradation of persistent organic pollutants by engineered catalyst of self-doped iron/carbon nanocomposite derived from waste toner powder [J]. Separation and Purification Technology, 2022, 291: 120963. DOI: https://doi.org/10.1016/j.seppur.2022.120963.

    Article  Google Scholar 

  53. KONG Ai-qun, JI Yan-hong, MA Huan-huan, et al. A novel route for the removal of Cu(II) and Ni(II) ions via homogeneous adsorption by chitosan solution [J]. Journal of Cleaner Production, 2018, 192: 801–808. DOI: https://doi.org/10.1016/j.jclepro.2018.04.271.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The overarching research goals were developed by WANG Shuai and MA **n. MA **n, DUAN Guang-yu and HUANG Jia-qi conducted the literature review and wrote the draft and validated the proposed method with practical experiments. YANG Jia and CAO Zhan-fang analyzed the experimental data. WANG Shuai edited the draft of the manuscript. All authors replied to reviewers’ comments and revised the final version.

Corresponding author

Correspondence to Shuai Wang  (王帅).

Ethics declarations

MA **n, DUAN Guang-yu, HUANG Jia-qi, YANG Jia, CAO Zhan-fang and WANG Shuai declare that they have no conflict of interest.

Additional information

Foundation item: Project(2013ZX07504) supported by the National Science and Technology Major Project of China; Project(2018JJ2484) supported by the Natural Science Foundation of Hunan Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Duan, Gy., Huang, Jq. et al. Preparation of graphene oxide/polyiminodiacetic acid resin as a high-performance adsorbent for Cu(II). J. Cent. South Univ. 30, 3881–3896 (2023). https://doi.org/10.1007/s11771-023-5510-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5510-6

Key words

关键词

Navigation