Log in

A novel utilization of high-Fe bauxite through co-roasting with coal gangue to separate iron and aluminum minerals

高铁铝土矿与煤矸石共焙烧实现铁铝分离

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

High-Fe bauxite is a typical refractory bauxite with extensive resources, and coal gangue is a solid waste produced during coal preparation. In this study, the co-roasting of high-Fe bauxite with coal gangue for iron and aluminum recycling was explored. The optimum conditions for co-roasting were roasting at 750 °C for 50 min with 40% coal gangue, and 70.55% particles with size <37 µm. Through magnetic separation, iron ore concentrate with 55.09% TFe and a recycling rate of 82.73%, and aluminum-rich products with Al2O3 of 21.67% and a recycling rate of 75.55% were produced. Based on the analysis of materials, hematite was transformed into magnetite, and diaspore was transformed into Al2O3 through co-roasting. Therefore, the co-roasting of high-Fe bauxite and coal gangue is a promising process for recycling iron and aluminum.

摘要

高铁铝土矿是一种储量巨大的典型难选铝土矿, 而煤矸石是选煤过程中产生的固体废弃物。本研究提出将高铁铝土矿与煤矸石共焙烧回收铁铝的方法。确定共焙烧的最佳条件为焙烧温度750 ℃、焙烧时间50 min、煤矸石配比40% 及磨矿粒度<37 µm 的占70.55%。焙烧产品经过磁选管磁选, 最终能得到总铁品位为55.09%、铁回收率为82.73% 的铁精矿和Al 2 O 3含量为21.67%、铝回收率达75.55%的富铝产品。物相分析表明, 共焙烧过程能将高铁赤泥中的赤铁矿有效转化为磁铁矿, 将一水硬铝石转化为Al2O3。实验表明, 高铁铝土矿与煤矸石共焙烧是一种很有应用前景的铁铝回收工艺。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Reference

  1. ZHANG Tao, YANG Hui-fen, ZHANG Hong-bo, et al. Aluminum extraction from activated coal gangue with carbide slag [J]. Journal of Analytical and Applied Pyrolysis, 2022, 163: 105504. DOI: https://doi.org/10.1016/j.jaap.2022.105504.

    Article  Google Scholar 

  2. ZHANG Lei, CHEN Hang-chao, PAN **-he, et al. Extraction of lithium from coal gangue by a roasting-leaching process [J]. International Journal of Coal Preparation and Utilization, 2023, 43(5): 863–878. DOI: https://doi.org/10.1080/19392699.2022.2083611.

    Article  Google Scholar 

  3. FU Hui-jun, LV Guo-zhi, ZHANG Ting-an, et al. Study on iron extraction from high iron bauxite residue by pyrite reduction [J]. Bulletin of Environmental Contamination and Toxicology, 2022, 109(1): 149–154. DOI: https://doi.org/10.1007/s00128-022-03520-8.

    Article  Google Scholar 

  4. VALEEV D, PANKRATOV D, SHOPPERT A, et al. Mechanism and kinetics of iron extraction from high silica boehmite-kaolinite bauxite by hydrochloric acid leaching [J]. Transactions of Nonferrous Metals Society of China, 2021, 31(10): 3128–3149. DOI: https://doi.org/10.1016/S1003-6326(21)65721-7.

    Article  Google Scholar 

  5. CAI **-peng, SHEN Pei-lun, LIU Dian-wen, et al. Growth of covellite crystal onto azurite surface during sulfurization and its response to flotation behavior [J]. International Journal of Mining Science and Technology, 2021, 31(6): 1003–1012. DOI: https://doi.org/10.1016/j.ijmst.2021.07.005.

    Article  Google Scholar 

  6. YANG Quan-cheng, ZHANG Fan, DENG **ng-jian, et al. Extraction of alumina from alumina rich coal gangue by a hydro-chemical process [J]. Royal Society Open Science, 2020, 7(4): 192132. DOI: https://doi.org/10.1098/rsos.192132.

    Article  Google Scholar 

  7. BAI Zhe, HAN Yue-xin, JIN Jian-**, et al. Extraction of vanadium from black shale by novel two-step fluidized roasting process [J]. Powder Technology, 2022, 408: 117745. DOI: https://doi.org/10.1016/j.powtec.2022.117745.

    Article  Google Scholar 

  8. XU Yu-jun, XIN Hai-xia, DUAN Hua-mei, et al. Reaction behavior of silicon-rich diasporic bauxite with ammonium sulfate during roasting [J]. Journal of Central South University, 2022, 29(1): 22–31. DOI: https://doi.org/10.1007/s11771-022-4917-9.

    Article  Google Scholar 

  9. BAI Zhe, HAN Yue-xin, JIN Jian-**, et al. Crystal transformation of sericite during fluidized roasting: A study combining experiment and simulation [J]. Minerals, 2022, 12(10): 1223. DOI: https://doi.org/10.3390/min12101223.

    Article  Google Scholar 

  10. YUAN Shuai, XIAO Han-xin, YU Tian-yi, et al. Enhanced removal of iron minerals from high-iron bauxite with advanced roasting technology for enrichment of aluminum [J]. Powder Technology, 2020, 372: 1–7. DOI: https://doi.org/10.1016/j.powtec.2020.05.112.

    Article  Google Scholar 

  11. TIAN Ding, SHEN **ao-yi, ZHAI Yu-chun, et al. Extraction of iron and aluminum from high-iron bauxite by ammonium sulfate roasting and water leaching [J]. Journal of Iron and Steel Research International, 2019, 26(6): 578–584. DOI: https://doi.org/10.1007/s42243-018-0128-x.

    Article  Google Scholar 

  12. DENG Bo-na, SI Peng-xiang, BAUMAN L, et al. Photocatalytic activity of CaTiO3 derived from roasting process of bauxite residue [J]. Journal of Cleaner Production, 2020, 244: 118598. DOI: https://doi.org/10.1016/j.jclepro.2019.118598.

    Article  Google Scholar 

  13. GU Fo-quan, LI Guang-hui, PENG Zhi-wei, et al. Upgrading diasporic bauxite ores for iron and alumina enrichment based on reductive roasting [J]. JOM, 2018, 70(9): 1893–1901. DOI: https://doi.org/10.1007/s11837-018-3000-3.

    Article  Google Scholar 

  14. CAO **g-ya, WU Qian-hong, LI Huan, et al. Metallogenic mechanism of **guo bauxite deposit, western Guangxi, China: Constraints from REE geochemistry and multi-fractal characteristics of major elements in bauxite ore [J]. Journal of Central South University, 2017, 24(7): 1627–1636. DOI: https://doi.org/10.1007/s11771-017-3568-8.

    Article  Google Scholar 

  15. CAO Yue, SUN Yong-sheng, GAO Peng, et al. Mechanism for suspension magnetization roasting of iron ore using straw-type biomass reductant [J]. International Journal of Mining Science and Technology, 2021, 31(6): 1075–1083. DOI: https://doi.org/10.1016/j.ijmst.2021.09.008.

    Article  Google Scholar 

  16. CARDENIA C, BALOMENOS E, PANIAS D. Iron recovery from bauxite residue through reductive roasting and wet magnetic separation [J]. Journal of Sustainable Metallurgy, 2019, 5(1): 9–19.

    Article  Google Scholar 

  17. QIN Qi-zheng, DENG Jiu-shuai, GENG Huan-huan, et al. An exploratory study on strategic metal recovery of coal gangue and sustainable utilization potential of recovery residue [J]. Journal of Cleaner Production, 2022, 340: 130765. DOI: https://doi.org/10.1016/j.jclepro.2022.130765.

    Article  Google Scholar 

  18. BAI Zhe, HAN Yue-xin, SUN Yong-sheng, et al. Temperature variation of V-bearing stone coal during decarburization roasting and the effect of roasting conditions [J]. Journal of Central South University, 2023, 30(6): 1817–1830. DOI: https://doi.org/10.1007/s11771-023-5361-1.

    Article  Google Scholar 

  19. ZHENG Guang-ya, XIA Ju-pei, LIU Cheng-long, et al. Dissolution of aluminum and titanium during high-temperature acidification of coal gangues and relative kinetics [J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2023, 45(2): 5411–5424. DOI: https://doi.org/10.1080/15567036.2019.1671917.

    Article  Google Scholar 

  20. BAI Zhe, HAN Yue-xin, JIN Jian-**, et al. Decarbonization kinetics for fluidized roasting of vanadium-bearing carbonaceous shale [J]. Journal of Thermal Analysis and Calorimetry, 2023, 148: 6873–6885. DOI: https://doi.org/10.1007/s10973-023-12135-y.

    Article  Google Scholar 

  21. ZHAO Ai-chun, ZHANG Ting-an. Study on extraction and separation performance of iron and aluminum from acid leaching solution of high-iron bauxite [J]. Russian Journal of Non-Ferrous Metals, 2022, 63(1): 37–45. DOI: https://doi.org/10.3103/s1067821222010023.

    Article  Google Scholar 

  22. HE Yong-fei, WANG Yi-yong, JIN Hun, et al. Conversion behavior of iron-containing minerals in the process of dissolving high-iron bauxite by starch hydrothermal method [M]//The Minerals, Metals & Materials Series. Cham: Springer International Publishing, 2020: 72–84. DOI: https://doi.org/10.1007/978-3-030-36408-3_11.

    Google Scholar 

  23. ZHOU Guo-tao, WANG Yi-lin, QI Tian-gui, et al. Cleaning disposal of high-iron bauxite residue using hydrothermal hydrogen reduction [J]. Bulletin of Environmental Contamination and Toxicology, 2022, 109(1): 163–168. DOI: https://doi.org/10.1007/s00128-022-03516-4.

    Article  Google Scholar 

  24. TIAN Tao, ZHANG Chao-lan, ZHU Feng, et al. Effect of phosphogypsum on saline-alkalinity and aggregate stability of bauxite residue [J]. Transactions of Nonferrous Metals Society of China, 2021, 31(5): 1484–1495. DOI: https://doi.org/10.1016/S1003-6326(21)65592-9.

    Article  Google Scholar 

  25. LI Yi-wei, LUO **ng-hua, LI Chu-xuan, et al. Variation of alkaline characteristics in bauxite residue under phosphogypsum amendment [J]. Journal of Central South University, 2019, 26(2): 361–372. DOI: https://doi.org/10.1007/s11771-019-4008-8.

    Article  Google Scholar 

  26. YUAN Shuai, XIAO Han-xin, YU Tian-yi, et al. Enhanced removal of iron minerals from high-iron bauxite with advanced roasting technology for enrichment of aluminum [J]. Powder Technology, 2020, 372: 1–7. DOI: https://doi.org/10.1016/j.powtec.2020.05.112.

    Article  Google Scholar 

  27. RAZMYSLOV I N, KOTOVA O B, SILAEV V I, et al. Microphase heterogenization of high-iron bauxite as a result of thermal radiation [J]. Journal of Mining Science, 2019, 55(5): 811–823. DOI: https://doi.org/10.1134/s1062739119056185.

    Article  Google Scholar 

  28. LI **ao-fei, ZHANG Ting-an, WANG Kun, et al. Experimental research on vortex melting reduction of high-iron red mud (bauxite residue) [J]. Bulletin of Environmental Contamination and Toxicology, 2022, 109(1): 155–162. DOI: https://doi.org/10.1007/s00128-022-03501-x.

    Article  Google Scholar 

  29. YUAN Shuai, ZHOU Wen-tao, LI Yan-jun, et al. Efficient enrichment of nickel and iron in laterite nickel ore by deep reduction and magnetic separation [J]. Transactions of Nonferrous Metals Society of China, 2020, 30(3): 812–822. DOI: https://doi.org/10.1016/S1003-6326(20)65256-6.

    Article  Google Scholar 

  30. LI **ao-bin, WANG Hong-yang, ZHOU Qiu-sheng, et al. Reaction behavior of kaolinite with ferric oxide during reduction roasting [J]. Transactions of Nonferrous Metals Society of China, 2019, 29(1): 186–193. DOI: https://doi.org/10.1016/S1003-6326(18)64927-1.

    Article  Google Scholar 

  31. ZHANG Liang-**g, HE Yuan, LÜ Peng, et al. Comparison of microwave and conventional heating routes for Kaolin thermal activation [J]. Journal of Central South University, 2020, 27(9): 2494–2506. DOI: https://doi.org/10.1007/s11771-020-4475-y.

    Article  Google Scholar 

  32. SUN Yong-sheng, ZHOU Wen-tao, HAN Yue-xin, et al. Effect of different additives on reaction characteristics of fluorapatite during coal-based reduction of iron ore [J]. Metals, 2019, 9(9): 923. DOI: https://doi.org/10.3390/met9090923.

    Article  Google Scholar 

  33. SUN Yong-sheng, ZHU **n-ran, HAN Yue-xin, et al. Iron recovery from refractory limonite ore using suspension magnetization roasting: A pilot-scale study [J]. Journal of Cleaner Production, 2020, 261: 121221. DOI: https://doi.org/10.1016/j.jclepro.2020.121221.

    Article  Google Scholar 

  34. CHEN Y F, WANG M C, HON M H. Phase transformation and growth of mullite in Kaolin ceramics [J]. Journal of the European Ceramic Society, 2004, 24(8): 2389–2397. DOI: https://doi.org/10.1016/S0955-2219(03)00631-9.

    Article  Google Scholar 

  35. SUN Yong-sheng, ZHANG Qi, HAN Yue-xin, et al. Comprehensive utilization of iron and phosphorus from high-phosphorus refractory iron ore [J]. JOM, 2018, 70(2): 144–149. DOI: https://doi.org/10.1007/s11837-017-2637-7.

    Article  Google Scholar 

  36. JORDÁN D, GONZÁLEZ-CHÁVEZ D, LAURA D, et al. Detection of magnetic moment in thin films with a homemade vibrating sample magnetometer [J]. Journal of Magnetism and Magnetic Materials, 2018, 456: 56–61. DOI: https://doi.org/10.1016/j.jmmm.2018.01.088.

  37. JACOB J, ABDUL KHADAR M. VSM and Mössbauer study of nanostructured hematite [J]. Journal of Magnetism and Magnetic Materials, 2010, 322(6): 614–621. DOI: https://doi.org/10.1016/j.jmmm.2009.10.025.

    Article  Google Scholar 

  38. YAMASHITA T, HAYES P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials [J]. Applied Surface Science, 2008, 254(8): 2441–2449. DOI: https://doi.org/10.1016/j.apsusc.2007.09.063.

    Article  Google Scholar 

  39. FANG Shuai, XU Long-hua, WU Hou-qin, et al. Influence of surface dissolution on sodium oleate adsorption on ilmenite and its gangue minerals by ultrasonic treatment [J]. Applied Surface Science, 2020, 500: 144038. DOI: https://doi.org/10.1016/j.apsusc.2019.144038.

    Article  Google Scholar 

  40. SALAMA W, EL AREF M, GAUPP R. Spectroscopic characterization of iron ores formed in different geological environments using FTIR, XPS, Mössbauer spectroscopy and thermoanalyses [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015, 136: 1816–1826. DOI: https://doi.org/10.1016/j.saa.2014.10.090.

    Article  Google Scholar 

  41. DING Ming-mei, CHEN Wei, XU Hang, et al. Novel α-Fe2O3/MXene nanocomposite as heterogeneous activator of peroxymonosulfate for the degradation of salicylic acid [J]. Journal of Hazardous Materials, 2020, 382: 121064. DOI: https://doi.org/10.1016/j.jhazmat.2019.121064.

    Article  Google Scholar 

  42. LEI Yun, DING Jia-jia, YU Peng-fei, et al. Low-temperature preparation of magnetically separable Fe3O4@ZnO-RGO for high-performance removal of methylene blue in visible light [J]. Journal of Alloys and Compounds, 2020, 821: 153366. DOI: https://doi.org/10.1016/j.jallcom.2019.153366.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

YUAN Shuai provided the concept and edited the draft of the manuscript. HUANG Cheng, WANG Ruo-feng, and DING Hao-yuan conducted relevant experiments. BAI Zhe conducted the literature review and wrote the manuscript.

Corresponding author

Correspondence to Zhe Bai  (白哲).

Ethics declarations

YUAN Shuai, HUANG Cheng, BAI Zhe, WANG Ruo-feng and DING Hao-yuan declare that they have no conflict of interest.

Additional information

Foundation item: Project(CNMRCUKF2301) supported by the Open Foundation of State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, China; Project(52174240) supported by the National Natural Science Foundation of China; Project(2021YFC2902404) supported by the National Key Research and Development Program of China; Project (N2101023) supported by the Fundamental Research Funds for the Central Universities, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, S., Huang, C., Bai, Z. et al. A novel utilization of high-Fe bauxite through co-roasting with coal gangue to separate iron and aluminum minerals. J. Cent. South Univ. 30, 2166–2178 (2023). https://doi.org/10.1007/s11771-023-5374-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5374-9

Key words

关键词

Navigation