Log in

Experimental study on influence of lithology on directional propagation law of type-I cracks

岩性对I 型裂纹定向扩展规律影响的试验研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

To study the influence of lithology on the directional propagation law of rock type-I cracks, a simple crack directional propagation device was used to conduct loading tests on three rock types. The acoustic emission (AE) and displacement field characteristics during crack directional propagation were analyzed, and the propagation mechanism of type-I cracks was discussed. The results indicate that the post-peak load curve of white sandstone showed a gradually decreasing trend, while marble and grey sandstone showed a steep decreasing trend. The AE evolution during crack propagation can be divided into four stages: quiet, slowly increasing, booming, and decreasing. For white sandstone, the duration of the first three stages was short, and the decreasing stage was long. However, the opposite trend was observed for the other types. The crack propagation process includes three stages based on the evolution law of the horizontal displacement field: elastic deformation, microcrack nucleation and coalescence, and crack initiation and propagation. The white sandstone enters the microcrack nucleation and coalescence stage earlier than marble and grey sandstone. The length of the fracture process zone of white sandstone was larger than those of marble and grey sandstone; thus, its crack directional propagation rate and stability were lower.

摘要

为揭示岩性对岩石I型裂纹定向扩展的影响规律,采用一种简易裂纹定向扩展装置开展白砂岩、 灰砂岩和大理岩3 类典型岩石加载试验,研究不同类型岩石I 型裂纹定向扩展过程中变形场及声发射演 化特征,探讨岩性影响下I 型裂纹扩展机制。研究结果表明:白砂岩峰后荷载曲线呈**缓降低趋势, 而大理岩和灰砂岩峰后曲线则呈陡降趋势,且其断面**整度高于白砂岩的,脆性断裂特征更为显著; 根据水**位移场演化规律,可将岩石I 型裂纹扩展过程划分为弹性变形、微裂纹集结成核和裂纹起裂 扩展3 个阶段,而白砂岩进入微裂纹集结成核阶段则远早于大理岩和灰砂岩;岩石I 型裂纹扩展全过程 中声发射演化可划分为**静期、活跃期、突增期和回落期4 个阶段,其中白砂岩**静期、活跃期及突 增期持续时间短、回落期持续时间长,而大理岩和灰砂岩则与之相反;岩石I 型裂纹扩展的本质是断 裂过程区孕育过程,由于白砂岩断裂过程区长度大于大理岩和灰砂岩的,造成其裂纹定向扩展速度及 稳定程度均低于其他两类岩石。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ZHAO Tong-bin, GUO Wei-yao, TAN Yun-liang, et al. Case histories of rock bursts under complicated geological conditions [J]. Bulletin of Engineering Geology and the Environment, 2018, 77(4): 1529–1545. DOI: https://doi.org/10.1007/s10064-017-1014-7.

    Article  Google Scholar 

  2. TIAN **-**, XU Dong-**g, LIU Tian-hao. An experimental investigation of the fracturing behaviour of rock-like materials containing two V-shaped parallelogram flaws [J]. International Journal of Mining Science and Technology, 2020, 30(6): 777–783. DOI: https://doi.org/10.1016/j.ijmst.2020.07.002.

    Article  Google Scholar 

  3. IRWIN G R. Analysis of stresses and strains near the end of a crack traversing a plate [J]. Journal of Applied Mechanics, 1957, 24(3): 361–364. DOI: https://doi.org/10.1115/1.4011547.

    Article  Google Scholar 

  4. WANG **-tao, ZUO Jian-**. Numerical simulation on effect of heterogeneity on mode I fracture characteristics of rock [J]. Journal of Central South University, 2020, 27(10): 3063–3077. DOI: https://doi.org/10.1007/s11771-020-4529-1.

    Article  Google Scholar 

  5. LI Hai-bo, LI Jian-chun, LIU Bo, et al. Direct tension test for rock material under different strain rates at quasi-static loads [J]. Rock Mechanics and Rock Engineering, 2013, 46(5): 1247–1254. DOI: https://doi.org/10.1007/s00603-013-0406-7.

    Article  Google Scholar 

  6. HUANG Da, ZHU Tan-tan. Experimental and numerical study on the strength and hybrid fracture of sandstone under tension-shear stress [J]. Engineering Fracture Mechanics, 2018, 200: 387–400. DOI: https://doi.org/10.1016/j.engfracmech.2018.08.012.

    Article  Google Scholar 

  7. LIU Zao-bao, ZHOU Hong-yuan, ZHANG Wang, et al. A new experimental method for tensile property study of quartz sandstone under confining pressure [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 123: 104091. DOI: https://doi.org/10.1016/j.ijrmms.2019.104091.

    Article  Google Scholar 

  8. ZHANG Wei, GUO Wei-yao, WANG Zhi-qi. Influence of lateral pressure on mechanical behavior of different rock types under biaxial compression [J]. Journal of Central South University, 2022, 29(11): 3695–3705. DOI: https://doi.org/10.1007/s11771-022-5196-1.

    Article  Google Scholar 

  9. HAERI H, SHAHRIAR K, MARJI M F, et al. Experimental and numerical study of crack propagation and coalescence in pre-cracked rock-like disks [J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 67: 20–28. DOI: https://doi.org/10.1016/j.ijrmms.2014.01.008.

    Article  Google Scholar 

  10. ZHOU Lei, ZHU Zhe-ming, QIU Hao, et al. Study of the effect of loading rates on crack propagation velocity and rock fracture toughness using cracked tunnel specimens [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 112: 25–34. DOI: https://doi.org/10.1016/j.ijrmms.2018.10.011.

    Article  Google Scholar 

  11. LIANG C Y, ZHANG Q B, LI X, et al. The effect of specimen shape and strain rate on uniaxial compressive behavior of rock material [J]. Bulletin of Engineering Geology and the Environment, 2016, 75(4): 1669–1681. DOI: https://doi.org/10.1007/s10064-015-0811-0.

    Article  Google Scholar 

  12. QIU Jia-dong, LUO Lin, LI **-bing, et al. Numerical investigation on the tensile fracturing behavior of rock-shotcrete interface based on discrete element method [J]. International Journal of Mining Science and Technology, 2020, 30(3): 293–301. DOI: https://doi.org/10.1016/j.ijmst.2020.03.007.

    Article  Google Scholar 

  13. CHEN Le-xin, GUO Wei-yao, ZHANG Dong-xiao, et al. Experimental study on the influence of prefabricated fissure size on the directional propagation law of rock type-I crack [J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 160: 105274. DOI: https://doi.org/10.1016/j.ijrmms.2022.105274.

    Article  Google Scholar 

  14. ZHAO Tong-bin, ZHANG Peng-fei, GUO Wei-yao, et al. Controlling roof with potential rock burst risk through different pre-crack length: Mechanism and effect research [J]. Journal of Central South University, 2022, 29(11): 3706–3719. DOI: https://doi.org/10.1007/s11771-022-5190-7.

    Article  Google Scholar 

  15. GUAN Jun-feng, ZHANG Yu-long, MENG Jiang-feng, et al. A simple method for determining independent fracture toughness and tensile strength of rock [J]. International Journal of Mining Science and Technology, 2022, 32(4): 707–726. DOI: https://doi.org/10.1016/j.ijmst.2022.05.004.

    Article  Google Scholar 

  16. ZHANG Dong-xiao, GUO Wei-yao, ZHAO Tong-bing, et al. Experimental study on directional propagation of rock type-I crack[J]. Rock and Soil Mechanics, 2022, 43(S2): 231–244. DOI: https://doi.org/10.16285/j.rsm.2021.2188.

    Google Scholar 

  17. HU **ao-zhi, LI Qing-bin, WU Zhi-min, et al. Modelling fracture process zone width and length for quasi-brittle fracture of rock, concrete and ceramics [J]. Engineering Fracture Mechanics, 2022, 259: 108158. DOI: https://doi.org/10.1016/j.engfracmech.2021.108158.

    Article  Google Scholar 

  18. LIN Qing, YUAN Hui-na, BIOLZI L, et al. Opening and mixed mode fracture processes in a quasi-brittle material via digital imaging [J]. Engineering Fracture Mechanics, 2014, 131: 176–193. DOI: https://doi.org/10.1016/j.engfracmech.2014.07.028.

    Article  Google Scholar 

  19. XING Hao-zhe, XIE Fang, WANG Ming-yang, et al. Experimental investigation of fracture process zone of rock in dynamic mode I fracturing and its effect on dynamic crack initiation toughness [J]. Engineering Fracture Mechanics, 2022, 275: 108828. DOI: https://doi.org/10.1016/j.engfracmech.2022.108828.

    Article  Google Scholar 

  20. GAO Ming-zhong, XIE **g, GAO Ya-nan, et al. Mechanical behavior of coal under different mining rates: A case study from laboratory experiments to field testing [J]. International Journal of Mining Science and Technology, 2021, 31(5): 825–841. DOI: https://doi.org/10.1016/j.ijmst.2021.06.007.

    Article  Google Scholar 

  21. ZHANG Yan-bo, YAO Xu-long, LIANG Peng, et al. Fracture evolution and localization effect of damage in rock based on wave velocity imaging technology [J]. Journal of Central South University, 2021, 28(9): 2752–2769. DOI: https://doi.org/10.1007/s11771-021-4806-7.

    Article  Google Scholar 

  22. GUO Wei-yao, CHEN Le-xin, YIN Li-ming, et al. Experimental study on the influence of loading rate on the directional propagation law of rock mode-I cracks [J]. Theoretical and Applied Fracture Mechanics, 2023, 125: 103873. DOI: https://doi.org/10.1016/j.tafmec.2023.103873.

    Article  Google Scholar 

  23. JENQ Y S, SHAH S P. A Fracture toughness criterion for concrete [J]. Engineering Fracture Mechanics, 1985, 21(5): 1055–1069. DOI: https://doi.org/10.1016/0013-7944(85)90009-8.

    Article  Google Scholar 

  24. BAŽANT Z P, PLANAS J. Fracture and Size Effect in Concrete and Other Quasibrittle Materials [M]. Routledge, 2019. DOI: https://doi.org/10.1201/9780203756799

  25. HILLERBORG A, MODÉER M, PETERSSON P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements [J]. Cement and Concrete Research, 1976, 6(6): 773–781. DOI: https://doi.org/10.1016/0008-8846(76)90007-7.

    Article  Google Scholar 

  26. CHEN Lei, ZHANG Guang-qing, ZOU Zhi-kun, et al. The effect of fracture growth rate on fracture process zone development in quasi-brittle rock [J]. Engineering Fracture Mechanics, 2021, 258: 108086. DOI: https://doi.org/10.1016/j.engfracmech.2021.108086.

    Article  Google Scholar 

  27. KRAMAROV V, PARRIKAR P N, MOKHTARI M. Evaluation of fracture toughness of sandstone and shale using digital image correlation [J]. Rock Mechanics and Rock Engineering, 2020, 53(9): 4231–4250. DOI: https://doi.org/10.1007/s00603-020-02171-7.

    Article  Google Scholar 

  28. ZHANG Nan, HEDAYAT A, BOLAÑOS SOSA H G, et al. Estimation of the mode I fracture toughness and evaluations on the strain behaviors of the compacted mine tailings from full-field displacement fields via digital image correlation [J]. Theoretical and Applied Fracture Mechanics, 2021, 114: 103014. DOI: https://doi.org/10.1016/j.tafmec.2021.103014.

    Article  Google Scholar 

  29. GARG P, PANDIT B, HEDAYAT A, et al. An integrated approach for evaluation of linear cohesive zone model’s performance in fracturing of rocks [J]. Rock Mechanics and Rock Engineering, 2022, 55(5): 2917–2936. DOI: 10.1007/s00603-021-02561-5.

    Article  Google Scholar 

  30. WU Qiu-hong, XIE Cheng-long, XIE You-sheng, et al. Extending application of asymmetric semi-circular bend specimen to investigate mixed mode I/II fracture behavior of granite [J]. Journal of Central South University, 2022, 29(4): 1289–1304. DOI: https://doi.org/10.1007/s11771-022-4989-6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

CHEN Le-xin and GUO Wei-yao designed experiments; CHEN Le-xin carried out experiments, GUO Wei-yao and JIANG Yu-**g analyzed experimental results; TAN Yan and HAN Fei analyzed DIC data; ZHANG Yue-ying and LU Dan analyzed AE data; CHEN Le-xin and GUO Wei-yao wrote the manuscript.

Corresponding author

Correspondence to Wei-yao Guo  (郭伟耀).

Ethics declarations

CHEN Le-xin, GUO Wei-yao, JIANG Yu-**g, TAN Yan, ZHANG Yue-ying, LU Dan and HAN Fei declare that they have no conflict of interest.

Additional information

Foundation item: Project(52274086) supported by National Natural Science Foundation of China; Project(ZR2019ZD13) supported by Major Program of Shandong Provincial Natural Science Foundation, China; Project supported by Education System Government Sponsored Study Abroad Program of Shandong Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Lx., Guo, Wy., Jiang, Yj. et al. Experimental study on influence of lithology on directional propagation law of type-I cracks. J. Cent. South Univ. 30, 3322–3334 (2023). https://doi.org/10.1007/s11771-023-5371-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5371-z

Key words

关键词

Navigation