Log in

Investigation on activation technology of self-heating decarbonization of coal gangue by a sintering process

煤矸石烧结自热脱碳活化技术研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Coal gangue is a solid waste discharged in coal mining and dressing process. Large-scale decarbonization and activation treatment are key steps toward massive and efficient utilization of coal gangue. In this paper, a new process for the preparation of a cement admixture from coal gangue by effectively utilizing its calorific value was developed. The mineral composition, crystal structure, and microstructure of the sintered products obtained under different sintering conditions were investigated using XRD, FTIR, SEM and mechanical property analysis to reveal the activation mechanism of coal gangue. The blended cement containing 30% activated coal gangue prepared by adding 3% coal and no return fine exhibited the best mechanical properties. Furthermore, the mechanical properties of the cement containing 30% activated coal gangue prepared without coal and return fine were adequate, reaching a productivity of 0.96 t/(m2·h). The results show that the thermal activation of exhaust sintering can greatly improve the cementitious activity of coal gangue. Finally, the applied technology is promising for industrial application.

摘要

煤矸石是煤炭开采和选矿过程中产生的固体废物。大规模脱碳和活化处理是实现煤矸石高效利 用的关键步骤。本文提出了一种利用煤矸石的热值烧结制备水泥混合材料的新工艺。利用XRD、 FTIR、SEM和力学性能分析, 研究了不同烧结活化条件下产物的矿物组成、晶体结构和微观结构, 揭 示了煤矸石的活化机理。试验表明, 添加3%的煤和不含返矿制备的活化煤矸石与水泥混合制备的水 泥胶砂(活化煤矸石配比为30%)具有最佳的力学性能。此外, 用不含煤和返矿制备活化煤矸石的利用 系数可达到0.96 t/(m2·h), 产品与水泥混合制备的水泥胶砂的力学性能良好。产品分析表明, 抽风烧结 的热活化能显著提高煤矸石的胶凝活性。过程能耗、生产效率和产品质量的综合评价表明, 该技术具 有良好的工业应用前景。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. WANG Bing, MA Yue-na, LEE **n-qing, et al. Environmental-friendly coal gangue-biochar composites reclaiming phosphate from water as a slow-release fertilizer [J]. Science of the Total Environment, 2021, 758: 143664. DOI: https://doi.org/10.1016/j.scitotenv.2020.143664.

    Article  Google Scholar 

  2. LI Jia-yan, WANG **-man. Comprehensive utilization and environmental risks of coal gangue: A review [J]. Journal of Cleaner Production, 2019, 239: 117946. DOI: https://doi.org/10.1016/j.jclepro.2019.117946.

    Article  Google Scholar 

  3. WU Ren-di, DAI Shao-bin, JIAN Shou-wei, et al. Utilization of solid waste high-volume calcium coal gangue in autoclaved aerated concrete: Physico-mechanical properties, hydration products and economic costs [J]. Journal of Cleaner Production, 2021, 278: 123416. DOI: https://doi.org/10.1016/j.jclepro.2020.123416.

    Article  Google Scholar 

  4. LIN **-qiang, WANG Dong-min, FENG Jian-hua, et al. Influence of activated coal gangue to shrinkage of highperformance concrete [J]. Concrete, 2013(7): 56–58, 61. (in Chinese)

  5. XU Chen-yang, FAN **ng-wang, ZHANG Liang, et al. Activated coal gangue used as concrete mineral mixture—Strength performance of concrete [J]. Ready - Mixed Concrete, 2010(4): 35–43. (in Chinese)

  6. WANG Ai-guo, LIU Peng, SUN Dao-sheng, et al, Research progress in activity evaluation method of calcined coal gangue powder material [J]. Materials Review, 2018, 32(11): 1903–1909. DOI: https://doi.org/10.11896/j.issn.1005-023X.2018.11.018. (in Chinese)

    Google Scholar 

  7. LIU Hai-bin, LIU Zhen-ling, Recycling utilization patterns of coal mining waste in China [J]. Resources, Conservation and Recycling, 2010, 54(12): 1331–1340. DOI: https://doi.org/10.1016/j.resconrec.2010.05.005.

    Article  Google Scholar 

  8. LI Fang, LI **n-ju, HOU Le, et al. A long-term study on the soil reconstruction process of reclaimed land by coal gangue filling [J]. CATENA, 2020, 195: 104874. DOI: https://doi.org/10.1016/j.catena.2020.104874.

    Article  Google Scholar 

  9. CAO Zhao, CAO Yong-dan, DONG Hong-juan, et al. Effect of calcination condition on the microstructure and pozzolanic activity of calcined coal gangue [J]. International Journal of Mineral Processing, 2016, 146: 23–28. DOI: https://doi.org/10.1016/j.minpro.2015.11.008.

    Article  Google Scholar 

  10. YAN Ke-zhou, GUO Yan-xia, FANG Li, et al. Decomposition and phase transformation mechanism of kaolinite calcined with sodium carbonate [J]. Applied Clay Science, 2017, 147: 90–96. DOI: https://doi.org/10.1016/j.clay.2017.07.010.

    Article  Google Scholar 

  11. BAUDET G, PERROTEL V, SERON A, et al, Two dimensions comminution of kaolinite clay particles [J]. Powder Technology, 1999, 105(1–3): 125–134. DOI: https://doi.org/10.1016/S0032-5910(99)00127-8.

    Article  Google Scholar 

  12. LI Chao, WAN Jian-hua, SUN Heng-hu, et al, Investigation on the activation of coal gangue by a new compound method [J]. Journal of Hazardous Materials, 2010, 179(1–3): 515–520. DOI: https://doi.org/10.1016/j.jhazmat.2010.03.033.

    Article  Google Scholar 

  13. de la VILLA R V, GARCÍA R, MARTÍNEZ-RAMÍREZ S, et al. Effects of calcination temperature and the addition of ZnO on coal waste activation: A mineralogical and morphological evolution [J]. Applied Clay Science, 2017, 150: 1–9. DOI: https://doi.org/10.1016/j.clay.2017.08.031.

    Article  Google Scholar 

  14. KUHNERT N, Microwave-assisted reactions in organic synthesis: Are there any nonthermal microwave effects? [J]. Angewandte Chemie (International Ed in English), 2002, 41(11): 1863–1866. DOI: https://doi.org/10.1002/1521-3773(20020603)41:11.

    Article  Google Scholar 

  15. GUAN **ao, CHEN Ji-xi, ZHU Meng-yu, et al. Performance of microwave-activated coal gangue powder as auxiliary cementitious material [J]. Journal of Materials Research and Technology, 2021, 14: 2799–2811. DOI: https://doi.org/10.1016/j.jmrt.2021.08.106.

    Article  Google Scholar 

  16. OOI T C, THOMPSON D, ANDERSON D R, et al, The effect of charcoal combustion on iron-ore sintering performance and emission of persistent organic pollutants [J]. Combustion and Flame, 2011, 158(5): 979–987. DOI: https://doi.org/10.1016/j.combustflame.2011.01.020.

    Article  Google Scholar 

  17. LU Li-ming, ADAM M, KILBURN M, et al, Substitution of charcoal for coke breeze in iron ore sintering [J]. ISIJ International, 2013, 53(9): 1607–1616. DOI: https://doi.org/10.2355/isi**ternational.53.1607.

    Article  Google Scholar 

  18. LU Sheng-hu, PAN Jian, LI Si-wei, et al, Preparation of sinter with low reduction degradation index for COREX reduction in a high proportion [J]. Journal of Iron and Steel Research International, 2023, 30(4): 635–649. DOI: https://doi.org/10.1007/s42243-022-00860-x.

    Article  Google Scholar 

  19. ZHU De-qing, SHI Ben-**g, PAN Jian, et al. Effect of pre-briquetting on the granulation of sinter mixture containing high proportion of specularite concentrate [J]. Powder Technology, 2018, 331: 250–257. DOI: https://doi.org/10.1016/j.powtec.2018.03.015.

    Article  Google Scholar 

  20. DAWSON P R. Recent developments in iron ore sintering. III, Granulation and strand feeding [J]. Ironmaking and Steelmaking, 1993, 20(2): 144–149.

    Google Scholar 

  21. GERMAN R M. Sintering theory and practice [M]. New York: Wiley, 1996.

    Google Scholar 

  22. YANG W, CHOI S, CHOI E S, et al, Combustion characteristics in an iron ore sintering bed—Evaluation of fuel substitution [J]. Combustion and Flame, 2006, 145(3): 447–463. DOI: https://doi.org/10.1016/j.combustflame.2006.01.005.

    Article  Google Scholar 

  23. ZHAO J P, LOO C E, DUKINO R D, Modelling fuel combustion in iron ore sintering [J]. Combustion and Flame, 2015, 162(4): 1019–1034. DOI: https://doi.org/10.1016/j.combustflame.2014.09.026.

    Article  Google Scholar 

  24. PTÁČEK P, KUBÁTOVÁ D, HAVLICA J, et al, Isothermal kinetic analysis of the thermal decomposition of kaolinite: The thermogravimetric study [J]. Thermochimica Acta, 2010, 501(1–2): 24–29. DOI: https://doi.org/10.1016/j.tca.2009.12.018.

    Article  Google Scholar 

  25. PALOMO A, GLASSER F. Chemically-bonded cementitious materials based on metakaolin [J]. British Ceramic Transactions and Journal, 1992, 91: 107–112.

    Google Scholar 

  26. KAKALI G, PERRAKI T, TSIVILIS S, et al, Thermal treatment of Kaolin: The effect of mineralogy on the pozzolanic activity [J]. Applied Clay Science, 2001, 20(1–2): 73–80. DOI: https://doi.org/10.1016/S0169-1317(01)00040-0.

    Article  Google Scholar 

  27. SHVARZMAN A, KOVLER K, GRADER G S, et al, The effect of dehydroxylation/amorphization degree on pozzolanic activity of kaolinite [J]. Cement and Concrete Research, 2003, 33(3): 405–416. DOI: https://doi.org/10.1016/S0008-8846(02)00975-4.

    Article  Google Scholar 

  28. BRINDLEY G W, NAKAHIRA M, A new concept of the transformation sequence of kaolinite to mullite [J]. Nature, 1958, 181(4619): 1333–1334. DOI: https://doi.org/10.1038/1811333a0.

    Article  Google Scholar 

  29. GAO Qiong-ying, ZHANG Zhi-qiang, Study on the structural change in the calcination process of kaolinite and its pozzolanic activity [J]. Journal of the Chinese Ceramic Society, 1989, 17(6): 541–548. (in Chinese)

    Google Scholar 

  30. MING Hui, Modification of kaolinite by controlled hydrothermal deuteration—A DRIFT spectroscopic study [J]. Clay Minerals, 2004, 39(3): 349–362. DOI: https://doi.org/10.1180/0009855043930140.

    Article  Google Scholar 

  31. ZHANG Ji-xiu, SUN Heng-hu, SUN Yin-ming, et al, Correlation between 29Si polymerization and cementitious activity of coal gangue [J]. Journal of Zhejiang University—Science A, 2009, 10(9): 1334–1340. DOI: https://doi.org/10.1631/jzus.A0920237.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Pan  (潘建).

Additional information

Contributors

LU Sheng-hu and GUO Zheng-qi conducted the literature review and wrote the manuscript. PAN Jian and LI Si-wei developed the overarching research goals and edited the draft of manuscript. ZHU De-qing edited the manuscript. SHI Yue and ZHANG Wu-ju validated the proposed method with practical experiments.

Conflict of interest

LU Sheng-hu, PAN Jian, ZHU De-qing, GUO Zheng-qi, LI Si-wei, SHI Yue, and ZHANG Wu-ju declare that they have no conflict of interest.

Foundation item

Project(2021zzts0291) supported by the Fundamental Research Funds for the Central Universities, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Sh., Pan, J., Zhu, Dq. et al. Investigation on activation technology of self-heating decarbonization of coal gangue by a sintering process. J. Cent. South Univ. 30, 1158–1167 (2023). https://doi.org/10.1007/s11771-023-5299-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5299-3

Key words

关键词

Navigation