Log in

Effect of static and dynamic misalignment of rolling bearing on nonlinear vibration characteristics of rotor system

滚动轴承静态和动态不对中对转子系统非线性振动特性的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In the research on rolling bearing misalignment, the influence of bearing misalignment on the vibration characteristics of the rotor system is rarely considered, especially for the dynamic bearing misalignment. Based on the limitations of the existing research, a five-degree of freedom (5-DOF) nonlinear force model considering bearing misalignment is proposed firstly. The model comprehensively considers the parallel and angular misalignment, static and dynamic misalignment, inner ring and outer ring misalignment. Secondly, the effects of misalignment on the dynamic contact characteristics of bearing and the vibration characteristics of the rotor system are analyzed. Then, based on the dynamic response, the evaluation indexes of bearing misalignment are given. Finally, the similarities and differences between parallel and angular misalignment, static and dynamic misalignment are compared. The results show that the bearing misalignment increases the resonance speed of the rotor, and the amplitude jum** phenomenon appears in the resonance region, showing the characteristics of hardening-type nonlinearity. In terms of frequency characteristics, dynamic parallel misalignment and dynamic angular misalignment increase the amplitude of frequency components fr and 2fr, respectively. The research can be used as a theoretical basis and valuable reference for fault identification of the rotor-bearing system.

摘要

在滚动轴承不对中问题的研究中, 以往的研究中很少考虑轴承不对中对转子系统振动特性的影响。基于现有研究的局限性, 首先, 给出了一种考虑轴承不对中的5 自由度非线性力模型, 该模型综合考虑了轴承的**行和角不对中、静态与动态不对中、内圈与外圈不对中等多种情况。其次, 将该模型应用在转子有限元模型中, 分析了不对中对轴承动态接触特性和转子系统振动特性的影响。然后, 给出了衡量轴承不对中程度的评价指标。最后, 对比分析了**行和角不对中、静态与动态不对中的异同点。结果表明, 轴承不对中提高了转子的共振转速, 在共振区出现了幅值跳跃现象, 表现出硬式非线性特征。从频率特征上来看, 滚动轴承动态**行不对中和动态角不对中分别导致转子旋转频率成分fr和2fr的幅值增大。动态不对中导致轴承的承载区随着轴承内圈的旋转而时刻变化。该研究可为转子-轴承系统的故障识别提供理论依据和有价值的参考。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

References

  1. HINTON W R. An investigation into the causes of ball bearing failures in types P2 and P3 engine-driven generators [J]. Wear, 1970, 16(1–2): 3–42. DOI: https://doi.org/10.1016/0043-1648(70)90261-9.

    Article  Google Scholar 

  2. SALAM I, TAUQIR A, UL HAQ A, et al. An air crash due to fatigue failure of a ball bearing [J]. Engineering Failure Analysis, 1998, 5(4): 261–269. DOI: https://doi.org/10.1016/S1350-6307(98)00024-7.

    Article  Google Scholar 

  3. XU Rui, SHEN **an-shao, FAN Qiang, et al. Failure analysis on aero-engine spindle ball bearings [J]. Bearing, 2012(6): 20–24. DOI: https://doi.org/10.19533/j.issn1000-3762.2012.06.009. (in Chinese)

  4. CHEN Cong-hui. The common failures of aero-engine mechanical system [M]. Bei**g: China Aviation Publishing & Media, 2013. (in Chinese)

    Google Scholar 

  5. CRAWFORD T S. The experimental determination of ball bearing cage stress [J]. Wear, 1970, 16(1–2): 43–52. DOI: https://doi.org/10.1016/0043-1648(70)90262-0.

    Article  Google Scholar 

  6. ISO 15243: 2017. Rolling bearings-damage and failures-terms, characteristics and causes [R]. Geneva: International Organization for Standardization, 2017.

    Google Scholar 

  7. HARRIS T A, KOTZALAS M N. Advanced concepts of bearing technology: Rolling bearing analysis [M]. Fifth edition. Boca Raton: CRC Press, 2006. DOI: https://doi.org/10.1201/9781420006582.

    Book  Google Scholar 

  8. LIOULIOS A N, ANTONIADIS I A. Effect of rotational speed fluctuations on the dynamic behaviour of rolling element bearings with radial clearances [J]. International Journal of Mechanical Sciences, 2006, 48(8): 809–829. DOI: https://doi.org/10.1016/j.ijmecsci.2006.03.006.

    Article  Google Scholar 

  9. WANG Li-qin, CUI Li, ZHENG De-zhi, et al. Nonlinear dynamics behaviors of a rotor roller bearing system with radial clearances and waviness considered [J]. Chinese Journal of Aeronautics, 2008, 21(1): 86–96. DOI: https://doi.org/10.1016/S1000-9361(08)60012-6.

    Article  Google Scholar 

  10. WANG Hai-fei, GONG Jun-jie, CHEN Guo. Characteristics analysis of aero-engine whole vibration response with rolling bearing radial clearance [J]. Journal of Mechanical Science and Technology, 2017, 31(5): 2129–2141. DOI: https://doi.org/10.1007/s12206-017-0409-5.

    Article  Google Scholar 

  11. WANG Kai, YANG Hong-juan, WU Han, et al. Theoretical model and experimental study of the influence of bearing inner clearance on bearing vibration [J]. Engineering Failure Analysis, 2022, 137: 106247. DOI: https://doi.org/10.1016/j.engfailanal.2022.106247.

    Article  Google Scholar 

  12. LU Zhen-yong, ZHONG Shun, CHEN Hui-zheng, et al. Nonlinear response analysis for a dual-rotor system supported by ball bearing [J]. International Journal of Nonlinear Mechanics, 2021, 128: 103627. DOI: https://doi.org/10.1016/j.ijnonlinmec.2020.103627.

    Article  Google Scholar 

  13. CHENG Hong-chuan, ZHANG Yi-min, LU Wen-jia, et al. Mechanical characteristics and nonlinear dynamic response analysis of rotor-bearing-coupling system [J]. Applied Mathematical Modelling, 2021, 93: 708–727. DOI: https://doi.org/10.1016/j.apm.2020.12.041.

    Article  MathSciNet  MATH  Google Scholar 

  14. GAO Peng, HOU Lei, YANG Rui, et al. Local defect modelling and nonlinear dynamic analysis for the inter-shaft bearing in a dual-rotor system [J]. Applied Mathematical Modelling, 2019, 68: 29–47. DOI: https://doi.org/10.1016/j.apm.2018.11.014.

    Article  MathSciNet  MATH  Google Scholar 

  15. YANG Rui, JIN Yu-lin, HOU Lei, et al. Study for ball bearing outer race characteristic defect frequency based on nonlinear dynamics analysis [J]. Nonlinear Dynamics, 2017, 90(2): 781–796. DOI: https://doi.org/10.1007/s11071-017-3692-x.

    Article  Google Scholar 

  16. YANG Yang, OUYANG Hua-jiang, YANG Yi-ren, et al. Vibration analysis of a dual-rotor-bearing-double casing system with pedestal looseness and multi-stage turbine blade-casing rub [J]. Mechanical Systems and Signal Processing, 2020, 143: 106845. DOI: https://doi.org/10.1016/j.ymssp.2020.106845.

    Article  Google Scholar 

  17. JIN Yu-lin, LIU Zhi-wen, YANG Yang, et al. Nonlinear vibrations of a dual-rotor-bearing-coupling misalignment system with blade-casing rubbing [J]. Journal of Sound and Vibration, 2021, 497: 115948. DOI: https://doi.org/10.1016/j.jsv.2021.115948.

    Article  Google Scholar 

  18. XIE Wen-zhen, LIU Chao, WANG Nan-fei, et al. Numerical and experimental analysis of rubbing-misalignment mixed fault in a dual-rotor system [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021, 235(17): 3179–3198. DOI: https://doi.org/10.1177/0954406220968581.

    Google Scholar 

  19. PRABITH K, PRAVEEN KRISHNA I R. Response and stability analysis of a two-spool aero-engine rotor system undergoing multi-disk rub-impact [J]. International Journal of Mechanical Sciences, 2022, 213: 106861. DOI: https://doi.org/10.1016/j.ijmecsci.2021.106861.

    Article  Google Scholar 

  20. LIU **g-ze, FEI Qing-guo, WU Shao-qing, et al. Nonlinear vibration response of a complex aeroengine under the rubbing fault [J]. Nonlinear Dynamics, 2021, 106(3): 1869–1890. DOI: https://doi.org/10.1007/s11071-021-06717-4.

    Article  Google Scholar 

  21. LUO Yue-gang, WANG Peng-fei, JIA Hai-feng, et al. Dynamic characteristics analysis of a seal-rotor system with rub-impact fault [J]. Journal of Computational and Nonlinear Dynamics, 2021, 16(8): 081003. DOI: https://doi.org/10.1115/1.4051185.

    Article  Google Scholar 

  22. LEE Y S, LEE C W. Modelling and vibration analysis of misaligned rotor-ball bearing systems [J]. Journal of Sound and Vibration, 1999, 224(1): 17–32. DOI: https://doi.org/10.1006/jsvi.1997.1301.

    Article  Google Scholar 

  23. WANG Nan-fei, JIANG Dong-xiang. Vibration response characteristics of a dual-rotor with unbalance-misalignment coupling faults: Theoretical analysis and experimental study [J]. Mechanism and Machine Theory, 2018, 125: 207–219. DOI: https://doi.org/10.1016/j.mechmachtheory.2018.03.009.

    Article  Google Scholar 

  24. LU Kuan, JIN Yu-lin, HUANG Pan-feng, et al. The applications of POD method in dual rotor-bearing systems with coupling misalignment [J]. Mechanical Systems and Signal Processing, 2021, 150: 107236. DOI: https://doi.org/10.1016/j.ymssp.2020.107236.

    Article  Google Scholar 

  25. LIU **g. A comprehensive comparative investigation of frictional force models for dynamics of rotor-bearing systems [J]. Journal of Central South University, 2020, 27(6): 1770–1779. DOI: https://doi.org/10.1007/s11771-020-4406-y.

    Article  Google Scholar 

  26. YI Jun, LIU Heng, WANG Feng-tao, et al. The resonance effect induced by the variable compliance vibration for an elastic rotor supported by roller bearings [J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-Body Dynamics, 2014, 228(4): 380–387. DOI: https://doi.org/10.1177/1464419314540901.

    Google Scholar 

  27. GAO Peng, HOU Lei, CHEN Yu-shu. Dynamic load and thermal coupled analysis for the inter-shaft bearing in a dual-rotor system [J]. Meccanica, 2021, 56(11): 2691–2706. DOI: https://doi.org/10.1007/s11012-021-01410-7.

    Article  MathSciNet  Google Scholar 

  28. ZHANG Du-zhou, WU Deng-yun, HAN Qin-kai, et al. Nonlinear dynamic force transmissibility of a flywheel rotor supported by angular contact ball bearings [J]. Nonlinear Dynamics, 2021, 103(3): 2273–2286. DOI: https://doi.org/10.1007/s11071-021-06221-9.

    Article  Google Scholar 

  29. GAO Tian, CAO Shu-qian, SUN Yong-tao. Nonlinear dynamic behavior of a flexible asymmetric aero-engine rotor system in maneuvering flight [J]. Chinese Journal of Aeronautics, 2020, 33(10): 2633–2648. DOI: https://doi.org/10.1016/j.cja.2020.04.001.

    Article  Google Scholar 

  30. HOU Sheng-liang, HOU Lei, DUN Shi-wei, et al. Vibration characteristics of a dual-rotor system with non-concentricity [J]. Machines, 2021, 9(11): 251. DOI: https://doi.org/10.3390/machines9110251.

    Article  Google Scholar 

  31. XU Teng-fei, YANG Li-hua, WU Wei, et al. Effect of angular misalignment of inner ring on the contact characteristics and stiffness coefficients of duplex angular contact ball bearings [J]. Mechanism and Machine Theory, 2021, 157: 104178. DOI: https://doi.org/10.1016/j.mechmachtheory.2020.104178.

    Article  Google Scholar 

  32. ZHENG **g-yang, JI **-chen, YIN Shan, et al. Internal loads and contact pressure distributions on the main shaft bearing in a modern gearless wind turbine [J]. Tribology International, 2020, 141: 105960. DOI: https://doi.org/10.1016/j.triboint.2019.105960.

    Article  Google Scholar 

  33. YANG Li-hua, XU Teng-fei, XU Hao-liang, et al. Mechanical behavior of double-row tapered roller bearing under combined external loads and angular misalignment [J]. International Journal of Mechanical Sciences, 2018, 142–143: 561–574. DOI: https://doi.org/10.1016/j.ijmecsci.2018.04.056.

    Article  Google Scholar 

  34. YANG Zhong-chi, ZHANG Yu, ZHANG Ke, et al. Wear analysis of angular contact ball bearing in multiple-bearing spindle system subjected to uncertain initial angular misalignment [J]. Journal of Tribology, 2021, 143(9): 091703. DOI: https://doi.org/10.1115/1.4049258.

    Article  Google Scholar 

  35. XU Hong-yang, WANG Peng-fei, MA Hui, et al. Analysis of axial and overturning ultimate load-bearing capacities of deep groove ball bearings under combined loads and arbitrary rotation speed [J]. Mechanism and Machine Theory, 2022, 169: 104665. DOI: https://doi.org/10.1016/j.mechmachtheory.2021.104665.

    Article  Google Scholar 

  36. WEN Cheng-wei, MENG **ang-hui, LYU Bu-gao, et al. Influence of angular misalignment on the tribological performance of high-speed micro ball bearings considering full multibody interactions [J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2021, 235(6): 1168–1189. DOI: https://doi.org/10.1177/1350650120948292.

    Article  Google Scholar 

  37. ZHANG Yan-fei, FANG Bin, KONG Ling-fei, et al. Effect of the ring misalignment on the service characteristics of ball bearing and rotor system [J]. Mechanism and Machine Theory, 2020, 151: 103889. DOI: https://doi.org/10.1016/j.mechmachtheory.2020.103889.

    Article  Google Scholar 

  38. WARDA B, CHUDZIK A. Effect of ring misalignment on the fatigue life of the radial cylindrical roller bearing [J]. International Journal of Mechanical Sciences, 2016, 111–112: 1–11. DOI: https://doi.org/10.1016/j.ijmecsci.2016.03.019.

    Article  Google Scholar 

  39. YI Jun, PANG Bi-tao, LIU Heng, et al. Influence of misalignment on nonlinear dynamic characteristics for matched bearings-rotor system [J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multibody Dynamics, 2014, 228(2): 172–181. DOI: https://doi.org/10.1177/1464419313520143.

    Google Scholar 

  40. WANG Peng-fei, XU Hong-yang, MA Hui, et al. Effects of three types of bearing misalignments on dynamic characteristics of planetary gear set-rotor system [J]. Mechanical Systems and Signal Processing, 2022, 169: 108736. DOI: https://doi.org/10.1016/j.ymssp.2021.108736.

    Article  Google Scholar 

  41. PARMAR V, SARAN V H, HARSHA S. Effect of dynamic misalignment on the vibration response, trajectory followed and defect-depth achieved by the rolling-elements in a double-row spherical rolling-element bearing [J]. Mechanism and Machine Theory, 2021, 162: 104366. DOI: https://doi.org/10.1016/j.mechmachtheory.2021.104366.

    Article  Google Scholar 

  42. WEN Bao-gang, WANG Mei-ling, HAN Qing-kai, et al. Effect of ball bearing misalignment on dynamic characteristics of rotor system [J]. IOP Conference Series: Materials Science and Engineering, 2021, 1081(1): 012014. DOI: https://doi.org/10.1088/1757-899x/1081/1/012014.

    Article  Google Scholar 

  43. MONMOUSSEAU P, FILLON M. Analysis of static and dynamic misaligned tilting-pad journal bearings [J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 1999, 213(4): 253–261. DOI: https://doi.org/10.1243/1350650991542640.

    Article  Google Scholar 

  44. LI M. Nonlinear vibration of a multirotor system connected by a flexible coupling subjected to the holonomic constraint of dynamic angular misalignment [J]. Mathematical Problems in Engineering, 2012: 1–15. DOI: https://doi.org/10.1155/2012/243758.

  45. WU Kun, LIU Zhi-wei, DING Qian. Vibration responses of rotating elastic coupling with dynamic spatial misalignment [J]. Mechanism and Machine Theory, 2020, 151: 103916. DOI: https://doi.org/10.1016/j.mechmachtheory.2020.103916.

    Article  Google Scholar 

  46. LIEW H V, LIM T C. Analysis of time-varying rolling element bearing characteristics [J]. Journal of Sound and Vibration, 2005, 283(3–5): 1163–1179. DOI: https://doi.org/10.1016/j.jsv.2004.06.022.

    Article  Google Scholar 

  47. ZHU Hai-min, CHEN Wei-fang, ZHU Ru-peng, et al. Dynamic analysis of a flexible rotor supported by ball bearings with dam** rings based on FEM and lumped mass theory [J]. Journal of Central South University, 2020, 27(12): 3684–3701. DOI: https://doi.org/10.1007/s11771-020-4510-z.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Ma  (马辉).

Additional information

Contributors

WANG Peng-fei established the models and edited the draft of manuscript. YANG Yang, XU Hong-yang and MA Hui edited the manuscript. MA Hui, HAN Qing-kai, LUO Zhong and WEN Bang-chun developed the overarching research goals and provided technical guidance.

Foundation item

Project(20195208003) supported by the Basic Research, China

Conflict of interest

WANG Peng-fei, YANG Yang, XU Hong-yang, MA Hui, HAN Qing-kai, LUO Zhong and WEN Bang-chun declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Pf., Yang, Y., Xu, Hy. et al. Effect of static and dynamic misalignment of rolling bearing on nonlinear vibration characteristics of rotor system. J. Cent. South Univ. 30, 871–903 (2023). https://doi.org/10.1007/s11771-023-5268-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5268-x

Key words

关键词

Navigation