Log in

An innovative option for the activation of chalcopyrite flotation depressed in a high alkali solution with the addition of acid mine drainage

一种矿山酸性废水利用的新方法: 活化高碱石灰溶液中被抑制黄铜矿的浮选

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Acid mine drainage (AMD) released from copper sulfide contains a large quantity of sulfuric acid and heavy metals, thus being a threat to the surrounding ecosystem. In this study, AMD is used to evaluate options for activation of chalcopyrite depressed by a high alkali solution (HAS). The results showed the flotation recovery of chalcopyrite inhibited by HAS could be increased by ∼12% with a volume ratio of AMD to HAS of 3:1. AMD promoted desorption of calcium components on chalcopyrite surfaces, and the adsorption of copper ions increased Cu-active sites on the mineral surfaces. Eventually, the copper atomic concentration of chalcopyrite surface increased by 2.2%, and the Ca—O/OH content decreased by 33.24%. Meanwhile, the area ratios of monosulfide (S2−) and disulfide (S 2−2 ) increased by 14.67% and 23.96%. Adsorption and localized electrochemical impedance spectroscopy (LEIS) confirmed that the average impedance of chalcopyrite surface obviously decreased from about 1.30×105 Ω to 1.13×105 Ω, and the adsorption amount of sodium isoamylxanthates (SIX) on the chalcopyrite sample increased by 1.99 mg/g. AMD promotes the adsorption of SIX and improves the hydrophobicity of chalcopyrite significantly. This study provided an innovative option for the comprehensive utilization of AMD, as well as the recovery of chalcopyrite from copper sulfide tailings.

摘要

硫化铜矿山容易产生富含硫酸、重金属离子的矿山酸性废水, 从而对周边生态系统构成威胁。 本文研究了矿山酸性废水对高碱石灰溶液中被抑制黄铜矿浮选的活化机制。试验结果表明; 当矿山酸 性废水与高碱石灰溶液体积比为3: 1 时, 被抑制黄铜矿的浮选回收率提高**12%; 矿山酸性废水能够 有效解吸原先罩盖在黄铜矿表面的亲水性钙物种, 并促使铜离子在矿物表面吸附; 黄铜矿表面铜原子 浓度增加了2.2%, Ca—O/OH物种的浓度降低了33.24%, S 2p 能谱中单一硫化物(S2−)和多硫化物(S2 2−) 的面积占比分别增加了14.67%和23.96%。捕收剂吸附量和微区电化学交流阻抗检测结果显示, 经过 矿山酸性废水活化后, 黄铜矿表面异戊基黄原酸钠的吸附量增加了1.99 mg/g, 矿物表面微区电化学交 流阻抗值由1.30×105 Ω 降低到1.13×105 Ω, 黄铜矿表面的疏水性得到明显改善。本论文为矿山酸性废 水资源的综合利用和尾矿中硫化铜矿的回收提供了一种新的途径。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. CÓRDOBA E M, MUÑOZ J A, BLÁZQUEZ M L, et al. Leaching of chalcopyrite with ferric ion. part I: General aspects [J]. Hydrometallurgy, 2008, 93(3–4): 81–87. DOI: https://doi.org/10.1016/j.hydromet.2008.04.015.

    Article  Google Scholar 

  2. LI Y, KAWASHIMA N, LI J, et al. A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite [J]. Advances in Colloid and Interface Science, 2013, 197–198: 1–32. DOI: https://doi.org/10.1016/j.cis.2013.03.004.

    Google Scholar 

  3. YAO **, XUE Ji-wei, YIN Wan-zhong, et al. Recovery of digenite from heavily oxidized Cu-S ore using Na2S as an activator [J]. Minerals Engineering, 2019, 134: 317–324. DOI: https://doi.org/10.1016/j.mineng.2019.02.023.

    Article  Google Scholar 

  4. MU Yu-fan, PENG Yong-jun, LAUTEN R A. The depression of pyrite in selective flotation by different reagent systems: A literature review [J]. Minerals Engineering, 2016, 96–97: 143–156. DOI: https://doi.org/10.1016/j.mineng.2016.06.018.

    Article  Google Scholar 

  5. BAI Shao-jun, YU Pan, LI Chun-long, et al. Depression of pyrite in a low-alkaline medium with added calcium hypochlorite: Experiment, visual MINTEQ models, XPS, and ToF-SIMS studies [J]. Minerals Engineering, 2019, 141: 105853. DOI: https://doi.org/10.1016/j.mineng.2019.105853.

    Article  Google Scholar 

  6. AGRAWAL A, SAHU K K. Problems, prospects and current trends of copper recycling in India: An overview [J]. Resources, Conservation and Recycling, 2010, 54(7): 401–416. DOI: https://doi.org/10.1016/j.resconrec.2009.09.005.

    Article  Google Scholar 

  7. GUO Yao-guang, HUANG Peng, ZHANG Wu-gang, et al. Leaching of heavy metals from Dexing copper mine tailings pond [J]. Transactions of Nonferrous Metals Society of China, 2013, 23(10): 3068–3075. DOI: https://doi.org/10.1016/S1003-6326(13)62835-6.

    Article  Google Scholar 

  8. YIN Zhi-gang, SUN Wei, HU Yue-hua, et al. Evaluation of the possibility of copper recovery from tailings by flotation through bench-scale, commissioning, and industrial tests [J]. Journal of Cleaner Production, 2018, 171: 1039–1048. DOI: https://doi.org/10.1016/j.jclepro.2017.10.020.

    Article  Google Scholar 

  9. JOHNSON D B, HALLBERG K B. Acid mine drainage remediation options: A review [J]. Science of the Total Environment, 2005, 338(1–2): 3–14. DOI: https://doi.org/10.1016/j.scitotenv.2004.09.002.

    Article  Google Scholar 

  10. JEONG J, KIM M S, KIM B S, et al. Recovery of H2SO4 from waste acid solution by a diffusion dialysis method [J]. Journal of Hazardous Materials, 2005, 124(1–3): 230–235. DOI: https://doi.org/10.1016/j.jhazmat.2005.05.005.

    Article  Google Scholar 

  11. PARK I, TABELIN C B, JEON S, et al. A review of recent strategies for acid mine drainage prevention and mine tailings recycling [J]. Chemosphere, 2019, 219: 588–606. DOI: https://doi.org/10.1016/j.chemosphere.2018.11.053.

    Article  Google Scholar 

  12. NAIDU G, RYU S, THIRUVENKATACHARI R, et al. A critical review on remediation, reuse, and resource recovery from acid mine drainage [J]. Environmental Pollution, 2019, 247: 1110–1124. DOI: https://doi.org/10.1016/j.envpol.2019.01.085.

    Article  Google Scholar 

  13. GRANDE J A, de la TORRE M L, CERÓN J C, et al. Overall hydrochemical characterization of the Iberian Pyrite Belt. Main acid mine drainage-generating sources (Huelva, SW Spain) [J]. Journal of Hydrology, 2010, 390(3–4): 123–130. DOI: https://doi.org/10.1016/j.jhydrol.2010.06.001.

    Article  Google Scholar 

  14. ABROSIMOVA N, GASKOVA O, LOSHKAREVA A, et al. Assessment of the acid mine drainage potential of waste rocks at the Ak-Sug porphyry Cu-Mo deposit [J]. Journal of Geochemical Exploration, 2015, 157: 1–14. DOI: https://doi.org/10.1016/j.gexplo.2015.05.009.

    Article  Google Scholar 

  15. HAN Y S, YOUM S J, OH C, et al. Geochemical and ecotoxicological characteristics of stream water and its sediments affected by acid mine drainage [J]. CATENA, 2017, 148: 52–59. DOI: https://doi.org/10.1016/j.catena.2015.11.015.

    Article  Google Scholar 

  16. KEFENI K K, MSAGATI T A M, MAMBA B B. Acid mine drainage: Prevention, treatment options, and resource recovery: A review [J]. Journal of Cleaner Production, 2017, 151: 475–493. DOI: https://doi.org/10.1016/j.jclepro.2017.03.082.

    Article  Google Scholar 

  17. NLEYA Y, SIMATE G S, NDLOVU S. Sustainability assessment of the recovery and utilisation of acid from acid mine drainage [J]. Journal of Cleaner Production, 2016, 113: 17–27. DOI: https://doi.org/10.1016/j.jclepro.2015.11.005.

    Article  Google Scholar 

  18. JURJOVEC J, PTACEK C J, BLOWES D W. Acid neutralization mechanisms and metal release in mine tailings: A laboratory column experiment [J]. Geochimica et Cosmochimica Acta, 2002, 66(9): 1511–1523. DOI: https://doi.org/10.1016/S0016-7037(01)00874-2.

    Article  Google Scholar 

  19. PÉREZ-LÓPEZ R, CAMA J, MIGUEL NIETO J, et al. Attenuation of pyrite oxidation with a fly ash pre-barrier: Reactive transport modelling of column experiments [J]. Applied Geochemistry, 2009, 24(9): 1712–1723. DOI: https://doi.org/10.1016/j.apgeochem.2009.05.001.

    Article  Google Scholar 

  20. ŇANCUCHEO I, HEDRICH S, JOHNSON D B. New microbiological strategies that enable the selective recovery and recycling of metals from acid mine drainage and mine process waters [J]. Mineralogical Magazine, 2012, 76(7): 2683–2692. DOI: https://doi.org/10.1180/minmag.2012.076.7.04.

    Article  Google Scholar 

  21. MASINDI V, GITARI M W, TUTU H, et al. Efficiency of ball milled South African bentonite clay for remediation of acid mine drainage [J]. Journal of Water Process Engineering, 2015, 8: 227–240. DOI: https://doi.org/10.1016/j.jwpe.2015.11.001.

    Article  Google Scholar 

  22. NARIYAN E, WOLKERSDORFER C, SILLANPÄÄ M. Sulfate removal from acid mine water from the deepest active European mine by precipitation and various electrocoagulation configurations [J]. Journal of Environmental Management, 2018, 227: 162–171. DOI: https://doi.org/10.1016/j.jenvman.2018.08.095.

    Article  Google Scholar 

  23. KAUR G, COUPERTHWAITE S J, HATTON-JONES B W, et al. Alternative neutralisation materials for acid mine drainage treatment [J]. Journal of Water Process Engineering, 2018, 22: 46–58. DOI: https://doi.org/10.1016/j.jwpe.2018.01.004.

    Article  Google Scholar 

  24. PAT-ESPADAS A, LOREDO PORTALES R, AMABILISSOSA L, et al. Review of constructed wetlands for acid mine drainage treatment [J]. Water, 2018, 10(11): 1685. DOI: https://doi.org/10.3390/w10111685.

    Article  Google Scholar 

  25. TAN L C, PAPIRIO S, LUONGO V, et al. Comparative performance of anaerobic attached biofilm and granular sludge reactors for the treatment of model mine drainage wastewater containing selenate, sulfate and nickel [J]. Chemical Engineering Journal, 2018, 345: 545–555. DOI: https://doi.org/10.1016/j.cej.2018.03.177.

    Article  Google Scholar 

  26. IGARASHI T, HERRERA P S, UCHIYAMA H, et al. The two-step neutralization ferrite-formation process for sustainable acid mine drainage treatment: Removal of copper, zinc and arsenic, and the influence of coexisting ions on ferritization [J]. Science of the Total Environment, 2020, 715: 136877. DOI: https://doi.org/10.1016/j.scitotenv.2020.136877.

    Article  Google Scholar 

  27. AKINWEKOMI V, MAREE J P, MASINDI V, et al. Beneficiation of acid mine drainage (AMD): A viable option for the synthesis of goethite, hematite, magnetite, and gypsum—Gearing towards a circular economy concept [J]. Minerals Engineering, 2020, 148: 106204. DOI: https://doi.org/10.1016/j.mineng.2020.106204.

    Article  Google Scholar 

  28. MAHIROGLU A, TARLAN-YEL E, SEVIMLI M F. Treatment of combined acid mine drainage (AMD) — Flotation circuit effluents from copper mine via Fenton’s process [J]. Journal of Hazardous Materials, 2009, 166(2–3): 782–787. DOI: https://doi.org/10.1016/j.jhazmat.2008.11.119.

    Article  Google Scholar 

  29. HU Yue-hua, ZHANG Shun-li, QIU Guan-zhou. Surface chemistry of activation of lime-depressed pyrite in flotation [J]. Transactions of Nonferrous Metals Society of China, 2000, 10(6): 798–803.

    Google Scholar 

  30. DENG Jiu-shuai, WEN Shu-ming, LIU Jian, et al. Adsorption and activation of copper ions on chalcopyrite surfaces: A new viewpoint of self-activation [J]. Transactions of Nonferrous Metals Society of China, 2014, 24(12): 3955–3963. DOI: https://doi.org/10.1016/S1003-6326(14)63556-1.

    Article  Google Scholar 

  31. BAI Shao-jun, BI Yun-xiao, LI Jie, et al. Innovative utilization of acid mine drainage (AMD): A promising activator for pyrite flotation once depressed in a high alkali solution (HAS)-Gearing towards a cleaner production concept of copper sulfide ore [J]. Minerals Engineering, 2021, 170: 106997. DOI: https://doi.org/10.1016/j.mineng.2021.106997.

    Article  Google Scholar 

  32. HAN Guang, WEN Shu-ming, WANG Han, et al. Lactic acid as selective depressant for flotation separation of chalcopyrite from pyrite and its depression mechanism [J]. Journal of Molecular Liquids, 2019, 296: 111774. DOI: https://doi.org/10.1016/j.molliq.2019.111774.

    Article  Google Scholar 

  33. MOIMANE T, HUAI Yang-yang, PENG Yong-jun. Evaluating the sulphidisation and flotation of oxidised chalcopyrite [J]. Minerals Engineering, 2021, 164: 106816. DOI: https://doi.org/10.1016/j.mineng.2021.106816.

    Article  Google Scholar 

  34. KHOSO S A, LYU Fei, MENG **ang-song, et al. Selective separation of chalcopyrite and pyrite with a novel and non-hazardous depressant reagent scheme [J]. Chemical Engineering Science, 2019, 209: 115204. DOI: https://doi.org/10.1016/j.ces.2019.115204.

    Article  Google Scholar 

  35. ZHAO Qiang, LIU Wen-gang, WEI De-zhou, et al. Effect of copper ions on the flotation separation of chalcopyrite and molybdenite using sodium sulfide as a depressant [J]. Minerals Engineering, 2018, 115: 44–52. DOI: https://doi.org/10.1016/j.mineng.2017.10.008.

    Article  Google Scholar 

  36. KALEGOWDA Y, CHAN Y L, WEI D H, et al. X-PEEM, XPS and ToF-SIMS characterisation of xanthate induced chalcopyrite flotation: Effect of pulp potential [J]. Surface Science, 2015, 635: 70–77. DOI:https://doi.org/10.1016/j.susc.2014.12.012.

    Article  Google Scholar 

  37. BUCKLEY A N, WOODS R. An X-ray photoelectron spectroscopic study of the oxidation of chalcopyrite [J]. Australian Journal of Chemistry, 1984, 37(12): 2403. DOI: https://doi.org/10.1071/ch9842403.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhan Ding  (丁湛).

Additional information

Contributors

BAI Shao-jun: Conceptualization, methodology, writing-review and editing. LI Jie: Investigation and data curation. YUAN Jia-qiao: Formal analysis and visualization. BI Yun-xiao: Methodology and data curation. DING Zhan: Conceptualization, data curation, writing-review and editing. WEN Shu-ming and DAI Hui-xin: Supervision.

Foundation item

Project(52164021) supported by the National Natural Science Foundation of China; Project(2019FB078) supported by the Natural Science Foundation of Yunnan Province, China; Project(CCC21321119A) supported by the Faculty of Land Resource Engineering, China

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Sj., Li, J., Yuan, Jq. et al. An innovative option for the activation of chalcopyrite flotation depressed in a high alkali solution with the addition of acid mine drainage. J. Cent. South Univ. 30, 811–822 (2023). https://doi.org/10.1007/s11771-023-5239-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5239-2

Key words

关键词

Navigation