Log in

Wear map for sliding wear behavior of Cu-15Ni-8Sn alloy against bearing steel under oil-lubricated condition

Cu-15Ni-8Sn 合金在油润滑条件下与轴承钢滑动磨损行为的磨损图

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Wear behaviors of a peak-aged Cu-15Ni-8Sn alloy fabricated by powder metallurgy were investigated. The results indicated that the friction coefficients and the wear rates of Cu-15Ni-8Sn alloy within a normal load range of 50-700 N and a sliding speed range of 0.05-2.58 m/s were less than 0.14 and 2.8×10−6 mm3/mm, respectively. Stribeck-like curve and wear map were developed to describe the oil-lubrication mechanism and wear behavior. The equation of the dividing line between zones of safe and unsafe wear life was determined. Lubricating oil was squeezed into micro-cracks under severe wear conditions. In addition, the lubricating oil reacted with Cu-15Ni-8Sn alloy to generate the corresponding sulfides, which hindered the repair of micro-cracks, promoted cracks growth, and led to delamination. This work has established guidelines for the application of the Cu-15Ni-8Sn alloy under oil-lubricated conditions through develo** wear map.

摘要

本文研究了粉末冶金法制备的峰时效态Cu-15Ni-8Sn 合金的磨损行为。结果表明:Cu-15Ni-8Sn 合金在50~700 N 的载荷和0.05~2.58 m/s 的滑动速度下进行摩擦磨损试验时,其**均摩擦系数均小于 0.14、磨损率均小于2.8×10−6 m3/mm。通过绘制Stribeck-like 曲线分析了润滑油的润滑机理。为了研 究合金的磨损行为,研制了磨损图。此外,还确定了安全磨损与严重磨损区域的分界线。在严重磨损 条件下,润滑油被挤压进入表面微裂纹,在裂纹壁上发生化学反应,生成相应的硫化物,阻止裂纹修 复,促进裂纹扩展,导致剥层。通过研制磨损图,为Cu-15Ni-8Sn 合金在油润滑条件下的应用提供了 指导。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SHANKAR K V, SELLAMUTHU R. Determination on the effect of tin content on microstructure, hardness, optimum aging temperature and aging time for spinodal bronze alloys cast in metal mold [J]. International Journal of Metalcasting, 2016, 11 (2): 189–194. DOI: 10.1007/s40962-016-0034-6.

    Article  Google Scholar 

  2. LUO B M, LID X, ZHAO C, WANG Z, LUO Z Q, ZHANG W W. A low Sn content Cu-Ni-Sn alloy with high strength and good ductility [J]. Materials Science and Engineering A, 2019, 746: 154–161. DOI: 10.1016/j.msea.2018.12.120.

    Article  Google Scholar 

  3. ILANGOVAN S, SREEJITH J, MANIDEEP M, HARISH S. An experimental investigation of Cu-Ni-Sn alloy on microstructure, hardness and wear parameters optimization using DOE [J]. Tribology in Industry, 2018, 40 (1): 156–163. DOI: 10.24874/ti.2018.40.01.15.

    Article  Google Scholar 

  4. BASAK C B, KRISHNAN M. Applicability of Scheil- Gulliver solidification model in real alloy: A case study with Cu-9wt%Ni-6wt%Sn alloy [J]. Philosophical Magazine Letters, 2015, 95 (7): 376–383. DOI: 10.1080/09500839.2015.1074296.

    Article  Google Scholar 

  5. ILANGOVAN S, SELLAMUTHU R. An investigation of the effect of Ni content and hardness on the wear behaviour of sand cast Cu-Ni-Sn alloys [J]. Intemational Journal of Microstructure and Materials Properties, 2012, 7 (4): 316–328. DOI: 10.1016/ j.jallcom.2015.05.215.

    Article  Google Scholar 

  6. FENG C F, WANG Y, CHEN W, ZHANG L, ZHOU K C. The mechanical mixed layer and its role in Cu-15Ni-8Sn/graphite composites [J]. Tribology Transactions, 2016, 60 (1): 135–145. DOI: 10.1080/10402004.2016.1152621.

    Article  Google Scholar 

  7. PLEWES J T. High-strength Cu-Ni-Sn alloys by thermomechanical processing [J]. Metallurgical Transactions A, 1975, 6A: 537–544. DOI: 10.1007/bf02658411.

    Article  Google Scholar 

  8. DIÁNEZ M J, DONOSO E, SAYAUÉS M J, PEREJÓ N A, SÁNCHEZ-JIMÁNEZ P E, PÉREZ-MAQUED A L A, CRIADO J M. The calorimetric analysis as a tool for studying the aging hardening mechanism of a Cu-10wt%Ni- 5.5wt%Sn alloy [J]. Journal of Alloys and Compounds, 2016, 688: 288–294. DOI: 10.1016/j.jallcom.2016.07.021.

    Article  Google Scholar 

  9. OUYANG Yi, GAN Xue-**, ZHANG Shi-zhong, ZHOU Ke-chao, JIANG Ye-xin, ZHANG **an-wei. Age-hardening behavior and microstructure of Cu-15Ni-8Sn-0.3Nb alloy prepared by powder metallurgy and hot extrusion [J]. Transactions of Nonferrous Metals Society of China, 2017, 27 (9): 1947–1955. DOI: 10.1016/S1003-6326(17)60219-X.

    Article  Google Scholar 

  10. ZHAO J C, NOTIS M R. Spinodal decomposition, ordering transformation, and discontinuous precipitation in a Cu-15Ni-8Sn alloy [J]. Acta Mater, 1998, 46(12): 4203–4218. DOI: 10.1016/s1359-6454(98)00095-0.

    Article  Google Scholar 

  11. ZHAO J C, NOTIS M R. Microstructure and precipitation kinetics in a Cu-7.5Ni-5Sn alloy [J]. Scripta Materialia, 1998, 39 (11): 1509–1516. DOI: 10.1016/S1359-6462(98)00341-8.

    Article  Google Scholar 

  12. SAHU P, PRADHAN S K, DE M. X-ray diffraction studies of the decomposition and microstructural characterization of cold-worked powders of Cu-15Ni-Sn alloys by Rietveld analysis [J]. Journal of Alloys and Compounds, 2004, 377 (1, 2): 103–116. DOI: 10.1016/j.jallcom.2003.10.019.

    Article  Google Scholar 

  13. KRATOCHVÍL P, MENCL P, Pešička A J, KOMNIK S N. The structure and low temperature strength of the age hardened Cu-15Ni-8Sn alloys [J]. Acta Metallurgica, 1984, 32 (9): 1493–1497. DOI: 10.1016/0001-6160(84)90095-6.

    Article  Google Scholar 

  14. VIRTANEN P, TIAINEN T. Stress relaxation behaviour in bending of high strength copper alloys in the Cu–Ni–Sn system [J]. Materials Science and Engineering A, 1997, 238: 407–410. DOI: 10.1016/S0921-5093(97)00462-0.

    Article  Google Scholar 

  15. WANG Y, ZHANG L, XIAO J K, CHEN W, FENG C F, GAN X P, ZHOU K C. The tribo-corrosion behavior of Cu-9wt% Ni-6wt% Sn alloy [J]. Tribology International, 2016, 94: 260–268. DOI: 10.1016/j.triboint.2015.06.031.

    Article  Google Scholar 

  16. YIN B, YIN Y, LEI Y, DONG L, ZHANG Y. Experimental and density functional studies on the corrosion behavior of the copper-nickel-tin alloy [J]. Chemical Physics Letters, 2011, 509(4-6): 192–197. DOI: 10.1016/j.cplett.2011. 04.100.

    Article  Google Scholar 

  17. ZHANG Shi-zhong, GAN Xue-**, CHENG **-juan, JIANG Ye-xin, LI Zhou, ZHOU Ke-chao. Effect of applied load on transition behavior of wear mechanism in Cu-15Ni-8Sn alloy under oil lubrication [J]. Journal of Central South University, 2017, 24: 1754–1761. DOI: https://doi.org/10.1007/ s11771-017-3583-9.

    Article  Google Scholar 

  18. ZHANG S Z, JIANG B H, DING W J. Wear of Cu-15Ni-8Sn spinodal alloy [J]. Wear, 2008, 264 (3, 4):199–203. DOI: 10.1016/j.wear.2007.03.003.

    Article  Google Scholar 

  19. SINGH J B, WEN J G, BELLON P. Nanoscale characterization of the transfer layer formed during dry sliding of Cu-15wt.%Ni-8wt.%Sn bronze alloy [J]. Acta Materialia, 2008, 56: 3053–3064. DOI: 10.1016/j.actamat. 2008.02.040.

    Article  Google Scholar 

  20. ZHANG S Z, JIANG B H, DING W J. Dry sliding wear of Cu-15Ni-8Sn alloy [J]. Tribology International, 2010, 43 (1, 2):64–68. DOI: 10.1016/j.triboint.2009.04.038.

    Article  Google Scholar 

  21. ZHANG G L, XIE G X, WANG J, SIL, N GUI D, WEN S Z, YANG F. Controlled frction behaviors of porous copper/graphite storing lonic liquid through electrical stimulation [J]. Adv Eng Mater, 2017, 20 (5): 1–8. DOI: 10.1002/adem.201700866.

    Google Scholar 

  22. WILSON S, ALPASA T. Wear mechanism maps for metal matrix composites [J]. Wear, 1997, 212: 41–49. DOI: 10.1016/s0043-1648(97)00142-7.

    Article  Google Scholar 

  23. RASOOL G, STACK M M. Wear maps for TiC composite based coatings deposited on 303 stainless steel [J]. Tribology International, 2014, 74: 93–102. DOI: 10.1016/j.triboint. 2014.02.002.

    Article  Google Scholar 

  24. AN J, SUN W, NIU X D. Dry sliding wear behavior and a proposed criterion for mild to severe wear transition of Mg-3Al-0.4Si-0.1Zn alloy [J]. Tribology Letters, 2017, 65 (98): 1–15. DOI: 10.1007/s11249-017-0882-0.

    Google Scholar 

  25. BLAU P J, COOLEY K M, BANSAL D, SMID I, EDEN T J, NESHASTEHTIZ M, POTTER J K, SEGALL A E. Spectrum loading effects on the running-in of lubricated bronze and surface-treated titanium against alloy steel [J]. Wear, 2013, 302 (1, 2):1064–1072. DOI: 10.1016/j.wear. 2012.11.071.

    Article  Google Scholar 

  26. AN J, ZHANG Y X, LV X X. Tribological characteristics of Mg-3Al-0.4Si-0.1Zn alloy at elevated temperatures of 50–200 °C [J]. Tribology Letters, 2018, 66 (14): 1–17. DOI: 10.1007/s11665-017-2926-x.

    Google Scholar 

  27. ROBERTS A, BROOKS R, SHIPWAY P. Internal combustion engine cold-start efficiency: A review of the problem, causes and potential solutions [J]. Energy Conversion and Management, 2014, 82: 327–350. DOI: 10.1016/j.enconman.2014.03.002.

    Article  Google Scholar 

  28. WEN Shi-zhu, HUANG **. Principles of tribology [M]. 2nd ed. Bei**g: Tsinghua University Press, 2002. (in Chinese)

    Google Scholar 

  29. ZHOU F, ADACHI K S, KATO K J. Wear-mechanism map of amorphous carbon nitride coatings sliding against silicon carbide balls in water [J]. Surface & Coatings Technology, 2006, 200 (16, 17):4909–4917. DOI: 10.1016/j.surfcoat. 2005.04.041.

    Article  Google Scholar 

  30. MURAKAMI T, YARIMITSU S, SAKAI N, NAKASHIMA K, YAMAGUCH I T, SAWAE Y. Importance of adaptive multimode lubrication mechanism in natural synovial joints [J]. Tribology International, 2017, 113: 306–315. DOI: 10.1016/j.triboint.2016.12.052.

    Article  Google Scholar 

  31. STRAFFELINI G. Friction and wear methodologies for design and control [M]. Switzerland: Springer, 2015. DOI: https://doi.org/10.1007/978-3-319-05894-8_2.

    Google Scholar 

  32. GONG T M, YAO P P, XIAO Y L, FAN K Y, TAN H Q, ZHANTG Z Y, ZHAO L, ZHOU H B, DENG M W. Wear map for a copper-based friction clutch material under oil lubrication [J]. Wear, 2015, 328–329: 270-276. DOI: 10.1016/j.triboint.2014.02.002.

    Google Scholar 

  33. BOSMAN R, SCHIPPER D J. Mild wear maps for boundary lubricated contacts [J]. Wear, 2012, 280–281: 54–62. DOI: 10.1016/j.wear.2012.01.019.

    Google Scholar 

  34. ZAMBRANO O A, GARCĪD D S, RODRĪGUEZ S A, CORONADO J J. The mild-severe wear transition in erosion wear [J]. Tribology Letters, 2018, 66 (95): 1–10. DOI: 10.1007/s11249-018-1046-6.

    Article  Google Scholar 

  35. GAO Y, JIE J C, ZHANG P C, ZHANG J, WANG T M, LI T J. Wear behavior of high strength and high conductivity Cu alloys under dry sliding [J]. Transactions of Nonferrous Metals Society of China, 2015, 25 (7): 2293–2300. DOI: 10.1016/s1003-6326(15)63844-4.

    Article  Google Scholar 

  36. PENG T, YAN Q Z, LI G, ZHANG X L, WEN Z F, JIN X S. The braking behaviors of Cu-based metallic brake pad for high-speed train under different initial braking speed [J]. Tribology Letters, 2017, 65 (135): 1–13. DOI: 10.1007/ s11249-017-0914-9.

    Google Scholar 

  37. SUN Jia-shu. Wear of metals [M]. Bei**g: Metallurgy Industry Press, 1992. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue-** Gan  (甘雪萍) or Qian Lei.

Additional information

Foundation item: Projects(2017YFB0306105, 2018YFE0306100) supported by the National Key Research and Development Program of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Jj., Gan, Xp., Li, Z. et al. Wear map for sliding wear behavior of Cu-15Ni-8Sn alloy against bearing steel under oil-lubricated condition. J. Cent. South Univ. 27, 311–324 (2020). https://doi.org/10.1007/s11771-020-4297-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4297-y

Key words

关键词

Navigation