Log in

Photovoltaic glass edge defect detection based on improved SqueezeNet

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

With the global energy shortage, countries all over the world are vigorously develo** new energy sources, and photovoltaic glass, as an important raw material for photovoltaic power generation, puts forward higher requirements for its output and quality. In order to solve the problems of low efficiency, susceptibility to interference by human factors, and low detection accuracy during the detection of photovoltaic glass edge defects by traditional manual methods, this paper proposes an automatic detection method of photovoltaic glass edge defects based on machine vision technology. Firstly, a machine vision defect detection system is designed to meet the needs of photovoltaic glass edge defect detection, includes high-contrast imaging solutions with a combination of multiple light sources for illumination and an automated transmission scheme with high stability, and an image dataset is established; Secondly, according to the characteristics of defect detection process with many interfering factors and high requirements for detection efficiency and accuracy, a deep learning defect detection method is proposed to improve the SqueezeNet model, which incorporates dense residual units into the two-part Fire Module of the classical SqueezeNet network model to extract the important feature information of the glass edge image, and effectively avoids the influence of interfering factors, such as water droplets, on the detection of defects. Finally, the improved SqueezeNet network algorithm is applied in the machine vision glass edge defect detection system designed in this paper. The experimental results show that the average leakage rate of the photovoltaic glass edge defect detection method proposed in this paper is 0.0064%, the misdetection detection rate is 0.0075%, and the average detection time is 2.715 s, and can meet the requirements of the automated production of photovoltaic glass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The data that have been used are confidential.

References

  1. Andrew, G., Zhu, M., Chen, B., Dmitry K., Wang, W., Tobias, W., Marco, A., Hartwig, A.: MobileNets: efficient convolutional neural networks for mobile vision applications. ar**v:1704.04861 (2017).

  2. Bao, Z., Xue, R., Hu, J., Liu, Y.: Color image encryption based on lite dense-ResNet and bit-XOR diffusion. Multimed. Tool. Appl. 10, 1–12 (2023). https://doi.org/10.1007/10.1007/s11042-023-16073-7

    Article  Google Scholar 

  3. Benjamin, L., Robin, O., Simon, R., Ian, B., Gavin, S., Peter, S., Christina, S., Lina, G., Anne, A., Jonathan, B., Paul, A., Stefan, K.: Towards improved cover glasses for photovoltaic devices. Prog. Photovoltaics. 28(11), 1187–1206 (2020). https://doi.org/10.1002/pip.3334

    Article  CAS  Google Scholar 

  4. Choi, H.: CVCC model: learning-based computer vision color constancy with RiR-DSN architecture. Sensors. 23(11), 5341 (2023). https://doi.org/10.3390/s23115341

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  5. Chang, M., Chen, B., Gabayno, J., Chen, M.: Development of an optical inspection platform for surface defect detection in touch panel glass. INT. J. Optomechatroni. 10(2), 63–72 (2016). https://doi.org/10.1080/15599612.2016.1166304

    Article  ADS  Google Scholar 

  6. Chao, S., Tsai, D.: An anisotropic diffusion-based defect detection for low-contrast glass substrates. Image. Vision. Comput. 26(2), 187–200 (2008). https://doi.org/10.1016/j.imavis.2007.03.003

    Article  Google Scholar 

  7. Dong, S., Chen, C., Liang, Y., Zou, K., Liu, G.: Defect detection of photovoltaic glass based on level set map. Neural Comput. Appl. 34(13), 10691–10705 (2022). https://doi.org/10.1007/s00521-022-07005-x

    Article  Google Scholar 

  8. Fu, M., Wu, K., Li, Y., Luo, L., Huang, W., Zhang, Q.: An intelligent detection method for plasmodium based on self-supervised learning and attention mechanism. Life Sci. 10, 1117192 (2023). https://doi.org/10.3389/fmed.2023.1117192

    Article  Google Scholar 

  9. Fu, G., Le, W., Zhang, Z., Li, J., Zhu, Q., Niu, F., Chen, H., Sun, F., Shen, Y.: A surface defect inspection model via rich feature extraction and residual-based progressive integration CNN. Machines. 11(1), 124 (2023). https://doi.org/10.3390/machines11010124

    Article  Google Scholar 

  10. Fu, G., Zhang, Z., Le, W., Li, J., Zhu, Q., Niu, F., Chen, H., Sun, F., Shen, Y.: A multi-scale pooling convolutional neural network for accurate steel surface defects classification. Front. Neurorobotics. 17, 1096083 (2023). https://doi.org/10.3389/fnbot.2023.1096083

    Article  Google Scholar 

  11. Forrest, N., Song, H., Matthew,W., Khalid, A., William, W., Kurt, K.: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size. ar**v:1602.07360 (2016).

  12. François, C.: Xception: deep learning with depthwise separable convolutions. ar**v:1610.02357 (2016).

  13. Hui, Z., Lu, A.: A deep learning method combined with an electronic nose for gas information id-entification of soybean from different origins. Chemometrics Intell. Lab Syst. 240, 104906 (2023). https://doi.org/10.1016/j.chemolab.2023.104906

    Article  CAS  Google Scholar 

  14. Hua, S., Li, B., Shu, L., Jiang, P., Cheng, S.J.M.: Defect detection method using laser vision with model-based segmentation for laser brazing welds on car body surface. Measurement 178, 109370 (2021). https://doi.org/10.1016/j.measurement.2021.109370

    Article  Google Scholar 

  15. He, Y., Song, K., Meng, Q., Yan, Y.: An end-to-end steel surface defect detection approach via fusing multiple hierarchical features. IEEE Trans. Instrum. Meas. 69(4), 1493–1504 (2020). https://doi.org/10.1109/TIM.2019.2915404

    Article  ADS  Google Scholar 

  16. Hu, J., Shen, L., Samuel, A., Sun, G., Wu, E.: Squeeze-and-excitation networks. ar**v:1709.01507 (2017).

  17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). (2016) https://doi.org/10.1109/cvpr.2016.90.

  18. Han, S., Mao, H., William, J.: Deep compression: compressing deep neural networks with pruning, trained quantization and Huffman coding. ar**v:1510.00149 (2015).

  19. Jiang, J., Cao, P., Lu, Z., Lou, W., Yang, Y.: Surface defect detection for mobile phone back glass based on symmetric convolutional neural network deep learning. Appl. Scl-Basel. (2020). https://doi.org/10.3390/app10103621

    Article  Google Scholar 

  20. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017). https://doi.org/10.1145/3065386

    Article  Google Scholar 

  21. Kopparapu, S.: Lighting design for machine vision application. Image Vision Comput. 24(7), 720–726 (2006). https://doi.org/10.1016/j.imavis.2005.12.016

    Article  Google Scholar 

  22. Lu, F., Zhang, Z., Guo, L., Chen, J., Zhu, Y., Yan, K., Zhou, X.: HFENet: a lightweight hand-crafted feature enhanced CNN for ceramic tile surface defect detection. Int. J. Intell. Syst. 37(12), 10670–10693 (2022). https://doi.org/10.1002/int.22935

    Article  Google Scholar 

  23. Li, M., Zhang, H., **, Y., Wang, Z., Guo, G.: Parallelizing Hartley transform with Hadoop for fast detection of glass defects. Concurr. Comp-Pract. E. 30(24), e4499 (2018). https://doi.org/10.1002/cpe.4499

    Article  Google Scholar 

  24. Lin, T., Priya, G., Ross, G., Kaiming, H Piotr, D.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988. (2017) ar**v:1708.02002.

  25. Miao, P., **ong, G., Ma, S., Srimahachota, T.: Deep learning-based inspection data mining and derived information fusion for enhanced bridge deterioration assessment. J. Bridge. Eng. 28(8), 04023048 (2023). https://doi.org/10.1061//JBENF2.BEENG-6053

    Article  Google Scholar 

  26. Ming, W., Shen, F., Li, X., Zhang, Z., Du, J., Chen, Z., Cao, Y.: A comprehensive review of defect detection in 3C glass components. Measurement 158, 107722 (2020). https://doi.org/10.1016/j.measurement.2020.107722

    Article  Google Scholar 

  27. Neogi, N., Mohanta, D.K., Dutta, P.K.: Review of vision-based steel surface inspection systems. Eurasip J Image Vide (2014). https://doi.org/10.1186/1687-5281-2014-50

    Article  Google Scholar 

  28. Passos, A., Cousseau, T., Luersen, M.: A smart deep convolutional neural network for real-time surface inspection. Comput. Syst. Sci. Eng. 41(2), 583–593 (2022). https://doi.org/10.32604/csse.2022.02002

    Article  Google Scholar 

  29. Subir, K., Subeesh, A., Kumkum, D., Dilip, J., Narendra, S.: Development of an optimally designed real-time automatic citrus fruit grading–sorting​ machine leveraging computer vision-based adaptive deep learning model. Eng. Appl. Artif. Intel. 120, 105826 (2023). https://doi.org/10.1016/j.engappai.2023.105826

    Article  Google Scholar 

  30. Surovi, N., Soh, G.: Acoustic feature based geometric defect identification in wire arc additive manufacturing. Virtual. Phys. Prototy. 18(1), e2210553 (2023). https://doi.org/10.1080/17452759.2023.2210553

    Article  Google Scholar 

  31. Sun, H., Zhang, S., Ren, R., Sun, L.: Surface defect detection of “Yuluxiang” pear using convolutional neural network with class-balance loss. Agronomy-Basel. 12(9), 2076 (2022). https://doi.org/10.3390/agronomy12092076

    Article  Google Scholar 

  32. Song, K., Yan, Y.: A noise robust method based on completed local binary patterns for hot-rolled steel strip surface defects. Appl. Surf. Sci. 285, 858–864 (2013). https://doi.org/10.1016/j.apsusc.2013.09.002

    Article  ADS  CAS  Google Scholar 

  33. Tai, Y., Yang, J., Liu, X., Xu, C.: MemNet: a persistent memory network for image restoration. ar**v:1708.02209 (2017).

  34. Van, D., **a, J., Jeong, Y., Yoon, J.: An automatic machine vision-based algorithm for inspection ofhardwood flooring defects during manufacturing. Eng. Appl. Artif. Intel. 123A, 10628 (2023). https://doi.org/10.1016/j.engappai.2023.106268

    Article  Google Scholar 

  35. Xu, W., **ao, P., Zhu, L., Zhang, L., Zhang, Y., Chang, J., Zhu, R., Xu, Y.: Classification and rating of steel scrap using deep learning. Eng. Appl. Artif. Intel. 123A, 106241 (2023). https://doi.org/10.1016//j.engappai.2023

    Article  Google Scholar 

  36. Ye, S., Wang, Z., **ong, P., Xu, X., Du, L., Tan, J., Wang, W.: Multi-stage few-shot micro-defect detection of patterned OLED panel using defect inpainting and multi-scale Siamese neural network. J. Inteil. Manuf. (2023). https://doi.org/10.1007/s10845-023-02168-3

    Article  Google Scholar 

  37. Yan, C., Zhang, G., Chen, Y., Huang, S., Zhao, Y., Wang, J.: One-dimensional structure reparameterized convolutional neural network for two-phase image reconstruction based on ERT Meas. Sci. Technol. 34(10), 105402 (2023). https://doi.org/10.1088/1361-6501/ace2df

    Article  ADS  Google Scholar 

  38. Yu, S., Seo, D., Paik, J.: Haze removal using deep convolutional neural network for Korea Multi-Purpose Satellite-3A (KOMPSAT-3A) multispectral remote sensing imagery. Eng. Appl. Artif. Intel. 123c, 106482 (2023). https://doi.org/10.1016/j.engappai.2023.106481

    Article  Google Scholar 

  39. Yang, S., Lee, G., Huang, L.: Deep learning-based dynamic computation task off loading for mobile edge computing networks. Sensors. 22(11), 4088 (2022). https://doi.org/10.3390/s22114088

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  40. Zhang, Z., Zhou, M., Wan, H., Li, M., Li, G., Han, D.: IDD-Net: industrial defect detection method based on deep-learning. Eng. Appl. Artif. Intel. 123B, 106390 (2023). https://doi.org/10.1016/j.engappai.2023.106390

    Article  Google Scholar 

  41. Zhang, C., Zhang, L.: Wind turbine pitch bearing fault detection with Bayesian augmented temporal convolutional networks. Struct. Hlth. Monit. 10, 1–12 (2023). https://doi.org/10.1177/14759217231175886

    Article  Google Scholar 

  42. Zhao, C., Shu, X., Yan, X., Zuo, X., Zhu, F.: RDD-YOLO: a modified YOLO for detection of steel surface defects. Measurement 214, 112776 (2023). https://doi.org/10.1016/j.measurement.2023.112776

    Article  Google Scholar 

  43. Zhen, J., Li, J., Ding, Z., Kong, L., Chen, Q.: Recognition of expiry data on food packages based on improved DBNet. Connect. Sci. 35(1), 1–16 (2023). https://doi.org/10.1080/09540091.2023.2202363

    Article  ADS  Google Scholar 

  44. Zhang, J., Qian, S., Tan, C.: Automated bridge surface crack detection and segmentation using computer vision-based deep learning model. Eng. Appl. Artif. Intel. 115, 105225 (2022). https://doi.org/10.1016/j.engappai.2022.105225

    Article  Google Scholar 

  45. Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. ar**v:1707.01083 (2017).

Download references

Acknowledgements

This work was supported by the Tongling University Industry-Academia-Research(IAR) Horizontal Research Project (Nos. 2022tlxyxdz118, 2023tlxyxdz019).

Author information

Authors and Affiliations

Authors

Contributions

JX contributed to ideas, creation of models, writing–original draft, and software. ZH contributed to formulation or evolution of overarching research goals and aims, provision of study materials, reviewing and editing. QZ contributed to supervision, management and coordination responsibility for the planning and execution of research activities. RY contributed to software.

Corresponding author

Correspondence to Jie **ong.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**ong, J., He, Z., Zhou, Q. et al. Photovoltaic glass edge defect detection based on improved SqueezeNet. SIViP 18, 2841–2856 (2024). https://doi.org/10.1007/s11760-023-02954-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-023-02954-9

Keywords

Navigation