Log in

Ameliorative effects of standardized extract of Tamarix stricta Boiss. on acetic acid-induced colitis via modulating nitrergic pathways

  • Original Article
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Inflammatory bowel disease (IBD) is a chronic recurrent disease with no certain treatment. Tamarisk is a medicinal plant mentioned in Persian medicine as an effective treatment for gastrointestinal bleeding. Current study aimed to investigate the ameliorative effect of Tamarix stricta Boiss. on acetic acid-induced colitis in rats and the role of nitrergic system. The hydro-ethanolic extract was analyzed via liquid chromatography–mass spectrometry. Gallic acid and quercetin were quantified with high-performance liquid chromatography. Following induction of colitis with acetic acid, T. stricta extract (50, 100, 150, and 200 mg/kg) was orally administered for two successive days. The involvement of nitrergic system was examined, using L-NG-Nitro Arginine Methyl Ester (L-NAME) and aminoguanidine as nitric oxide synthase (NOS) inhibitors. Finally, macroscopic and microscopic analyses were performed. Tissue concentrations of inflammatory mediators including interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and myeloperoxidase (MPO) were assessed. T. stricta, especially at 200 mg/kg dose, could significantly improve colitis and downregulate the inflammatory factors including TNF-α, IL-1β, and MPO (P <0.001). Concomitant use of NOS inhibitors with 200 mg/kg of the plant extract reversed the observed positive effects, which demonstrates the protective role of NO in IBD pathogenesis as a probable mechanism for T. stricta in healing process of colitis. The positive effect of T. stricta on colitis might be attributed to anti-inflammatory properties of its polyphenolic components, mainly through modulation of the nitrergic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

Abbreviations

ANOVA:

analysis of variances

IBD:

inflammatory bowel diseases

UC:

ulcerative colitis

CD:

Crohn’s disease

IL:

interleukin

TNF:

tumor necrosis factor

TGF:

transforming growth factor

IFN:

interferon

NF-κB:

nuclear factor-kappa B

NO:

nitric oxide

iNOS:

inducible nitric oxide synthase

eNOS:

endothelial nitric oxide synthase

HPLC:

high-performance liquid chromatography

LC-MS:

liquid chromatography-mass spectrometry

ip:

intraperitoneal

L- NAME:

L-NG-Nitro Arginine Methyl Ester

GI:

gastrointestinal tract

MPO:

myeloperoxidase

T-50-200:

Tamarix extract with the doses of 50-200 mg/kg

SEM:

standard error of mean

SPSS:

statistical package for the social sciences

References

  • Aghili Khorasani MH (1771) Makhzan-al-Adviah. Tehran University of Medical Sciences, Tehran, Iran

    Google Scholar 

  • Antonioli L, Fornai M, Colucci R, Ghisu N, Da Settimo F, Natale G et al (2007) Inhibition of adenosine deaminase attenuates inflammation in experimental colitis. J Pharmacol Exp Ther 322(2):435–442. https://doi.org/10.1124/jpet.107.122762

    Article  CAS  PubMed  Google Scholar 

  • Aoi V, Terashima S, Ogura M, Nishio H, Kato S, Takeuchi K (2008) Roles of nitric oxide (NO) and NO synthases in healing of dextran sulfate sodium-induced rat colitis. J Physiol Pharmacol 59(2):315

    CAS  PubMed  Google Scholar 

  • Bahramsoltani R, Farzaei MH, Iranpanah A, Hajimahmoudi M, Pourjabar Z, Daglia M et al (2019) Phytochemical and toxicological evaluation of Tamarix stricta Boiss. Drug Chem Toxicol: 1–8. https://doi.org/10.1080/01480545.2019.1680687

  • Bahramsoltani R, Kalkhorani M, Zaidi SMA, Farzaei MH, Rahimi R (2020) The genus Tamarix: traditional uses, phytochemistry, and pharmacology. J Ethnopharmacol 246:112245

    Article  CAS  Google Scholar 

  • Bahramsoltani R, Farzaei MH, Sajadimajd S, Iranpanah A, Khazaei M, Pourjabbar Z, Hajomahmoodi M, Rahimi R (2021) In vitro and in vivo antidiabetic activity of Tamarix stricta Boiss.: Role of autophagy. J Ethnopharmacol 269:113692. https://doi.org/10.1016/j.jep.2020.113692

    Article  CAS  PubMed  Google Scholar 

  • Bradley J (2008) TNF-mediated inflammatory disease. J Pathol 214(2):149–160

    Article  CAS  Google Scholar 

  • Chaturvedi S, Drabu S, Sharma M (2012) Anti-inflammatory and analgesic activity of Tamarix gallica. Int J Pharm Sci 4:653–658

    Google Scholar 

  • Chen R, Yang Y, Xu J, Pan Y, Zhang W, **ng Y et al (2018) Tamarix hohenackeri Bunge exerts anti-inflammatory effects on lipopolysaccharide-activated microglia in vitro. Phytomedicine 40:10–19

    Article  CAS  Google Scholar 

  • Dejban P, Rahimi N, Takzare N, Dehpour AR (2020) Biochemical and histopathological evidence for the beneficial effects of modafinil on the rat model of inflammatory bowel disease: involvement of nitric oxide pathway. Pharmacol Rep 72(1):135–146. https://doi.org/10.1007/s43440-019-00054-5

    Article  CAS  PubMed  Google Scholar 

  • Dikopoulos N, Nüssler A, Liptay S, Bachem M, Reinshagen M, Stiegler M et al (2001) Inhibition of nitric oxide synthesis by aminoguanidine increases intestinal damage in the acute phase of rat TNB-colitis. Eur J Clin Invest 31(3):234–239

    Article  CAS  Google Scholar 

  • Dodda D, Chhajed R, Mishra J (2014) Protective effect of quercetin against acetic acid induced inflammatory bowel disease (IBD) like symptoms in rats: Possible morphological and biochemical alterations. Pharmacol Rep 66(1):169–173

    Article  CAS  Google Scholar 

  • Dolatabadi F, Abdolghaffari AH, Farzaei MH, Baeeri M, Ziarani FS, Eslami M et al (2018) The protective effect of Melissa officinalis L. in visceral hypersensitivity in rat using 2 models of acid-induced colitis and stress-induced irritable bowel syndrome: a possible role of nitric oxide pathway. J Neurogastroenterol Motil 24(3):490. https://doi.org/10.5056/jnm17035

    Article  PubMed  PubMed Central  Google Scholar 

  • Fakhraei N, Abdolghaffari AH, Delfan B, Abbasi A, Rahimi N, Khansari A et al (2014) Protective effect of hydroalcoholic olive leaf extract on experimental model of colitis in rat: involvement of nitrergic and opioidergic systems. Phytother Res 28(9):1367–1373. https://doi.org/10.1002/ptr.5139

    Article  CAS  PubMed  Google Scholar 

  • Fan F-Y, Sang L-X, Jiang M (2017) Catechins and their therapeutic benefits to inflammatory bowel disease. Molecules 22(3):484. https://doi.org/10.3390/molecules22030484

    Article  CAS  Google Scholar 

  • Fang W, Zhu S, Niu Z, Yin Y (2019) The protective effect of syringic acid on dextran sulfate sodium-induced experimental colitis in BALB/c mice. Drug Dev Res 80(6):731–740

    Article  CAS  Google Scholar 

  • Farghaly HS, Thabit RH (2014) L-arginine and aminoguanidine reduce colonic damage of acetic acid-induced colitis in rats: potential modulation of nuclear factor-kappaB/p65. Clin Exp Pharmacol Physiol 41(10):769–779

    Article  CAS  Google Scholar 

  • Farzaei MH, Ghasemi-Niri SF, Abdolghafari AH, Baeeri M, Khanavi M, Navaei-Nigjeh M et al (2015) Biochemical and histopathological evidence on the beneficial effects of Tragopogon graminifolius in TNBS-induced colitis. Pharm Biol 53(3):429–436

    Article  Google Scholar 

  • Francescone R, Hou V, Grivennikov SI (2015) Cytokines, IBD, and Colitis-associated Cancer. Inflamm Bowel Dis 21(2):409–418. https://doi.org/10.1097/MIB.0000000000000236

    Article  PubMed  Google Scholar 

  • Hoensch HP, Weigmann B (2018) Regulation of the intestinal immune system by flavonoids and its utility in chronic inflammatory bowel disease. World J Gastroenterol 24(8):877–881

    Article  CAS  Google Scholar 

  • Hosoi T, Goto H, Arisawa T, Niwa Y, Okada N, Ohmiya N et al (2001) Role of nitric oxide synthase inhibitor in experimental colitis induced by 2, 4, 6-trinitrobenzene sulphonic acid in rats. Clin Exp Pharmacol Physiol 28(1–2):9–12. https://doi.org/10.1046/j.1440-1681.2001.03388.x

    Article  CAS  PubMed  Google Scholar 

  • Izadpanah S, Farjadmand F, Eftekhari M, Baeeri M, Rahimifard M, Momtaz S, et al (2019) Beneficial effects of Trachyspermum ammi (L.) sprague on rat irritable bowel syndrome. Res J Pharmacognosy 6(2):57–66. https://doi.org/10.22127/rjp.2019.84320

  • Kahkeshani N, Farzaei F, Fotouhi M, Alavi SS, Bahramsoltani R, Naseri R et al (2019) Pharmacological effects of gallic acid in health and diseases: a mechanistic review. Iran J Basic Med Sci 22(3):225. https://doi.org/10.22038/IJBMS.2019.32806.7897

  • Kamalian A, Asl MS, Dolatshahi M, Afshari K, Shamshiri S, Roudsari NM et al (2020) Interventions of natural and synthetic agents in inflammatory bowel disease, modulation of nitric oxide pathways. World J Gastroenterol 26(24):3365–3400. https://doi.org/10.3748/wjg.v26.i24.3365

    Article  PubMed  PubMed Central  Google Scholar 

  • Khanavi M, Sabbagh-Bani-Azad M, Abdolghaffari AH, Vazirian M, Isazadeh I, Rezvanfar MA et al (2014) On the benefit of galls of Quercus brantii Lindl. in murine colitis: the role of free gallic acid. Arch Med Sci 10(6):1225

    Article  Google Scholar 

  • Khodayar B, Farzaei MH, Abdolghaffari AH, Bahramsoltani R, Baeeri M, Sabbagh Ziarani F et al (2018) The protective effect of the gallic acid against TNBS-induced ulcerative colitis in rats: Role of inflammatory parameters. J Iran Med Council 1(1):34–42

    Google Scholar 

  • Kim JA, Kim DK, Kang OH, Choi YA, Park HJ, Choi SC et al (2005) Inhibitory effect of luteolin on TNF-α-induced IL-8 production in human colon epithelial cells. Int Immunopharmacol 5(1):209–217

    Article  CAS  Google Scholar 

  • Koda-Kimble MA (2012) Koda-Kimble and Young’s applied therapeutics: the clinical use of drugs. Lippincott Williams & Wilkins, Philadelphia

  • Kojima R, Hamamoto S, Moriwaki M, Iwadate K, Ohwaki T (2001) The new experimental ulcerative colitis model in rats induced by subserosal injection of acetic acid. Nihon Yakurigaku Zasshi 118(2):123–130

    Article  CAS  Google Scholar 

  • Ksouri R, Falleh H, Megdiche W, Trabelsi N, Mhamdi B, Chaieb K et al (2009) Antioxidant and antimicrobial activities of the edible medicinal halophyte Tamarix gallica L. and related polyphenolic constituents. Food Chem Toxicol 47(8):2083–2091

    Article  CAS  Google Scholar 

  • Li Y, Shen L, Luo H (2016) Luteolin ameliorates dextran sulfate sodium-induced colitis in mice possibly through activation of the Nrf2 signaling pathway. Int Immunopharmacol 40:24–31

    Article  CAS  Google Scholar 

  • Mahfoudhi A, Grosso C, Goncalves RF, Khelifi E, Hammami S, Achour S et al (2016) Evaluation of antioxidant, anticholinesterase, and antidiabetic potential of dry leaves and stems in Tamarix aphylla growing wild in Tunisia. Chem Biodivers 13(12):1747–1755

    Article  CAS  Google Scholar 

  • Molodecky NA, Kaplan GG (2010) Environmental risk factors for inflammatory bowel disease. Gastroenterol Hepatol 6(5):339

    Google Scholar 

  • Morris GP, Beck PL, Herridge MS, Depew WT, Szewczuk MR, Wallace JL (1989) Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology 96(2):795–803

    Article  CAS  Google Scholar 

  • Mozaffari S, Nikfar S, Abdolghaffari AH, Abdollahi M (2014) New biologic therapeutics for ulcerative colitis and Crohn’s disease. Expert Opin Biol Ther 14(5):583–600

    Article  CAS  Google Scholar 

  • Pandurangan AK, Mohebali N, Esa NM, Looi CY, Ismail S, Saadatdoust Z (2015) Gallic acid suppresses inflammation in dextran sodium sulfate-induced colitis in mice: Possible mechanisms. Int Immunopharmacol 28(2):1034–1043

    Article  CAS  Google Scholar 

  • Pithadia AB, Jain S (2011) Treatment of inflammatory bowel disease (IBD). Pharmacol Rep 63(3):629–642

    Article  CAS  Google Scholar 

  • Porras M, Martin M, Torres R, Vergara P (2006) Cyclical upregulated iNOS and long-term downregulated nNOS are the bases for relapse and quiescent phases in a rat model of IBD. Am J Physiol Gastrointest Liver Physiol 290(3):G423–GG30

    Article  CAS  Google Scholar 

  • Rahimi N, Delfan B, Motamed-Gorji N, Dehpour AR (2017) Effects of oleuropein on pentylenetetrazol-induced seizures in mice: involvement of opioidergic and nitrergic systems. J Nat Med 71(2):389–396. https://doi.org/10.1007/s11418-017-1071-z

    Article  CAS  PubMed  Google Scholar 

  • Rahman M, Haque E, Hasanuzzaman M, Shahid I (2011) Antinociceptive, antiinflammatory and antibacterial properties of Tamarix indica roots. Int J Pharmacol 7(4):527–531

    Article  CAS  Google Scholar 

  • Rasouli H, Farzaei MH, Khodarahmi R (2017) Polyphenols and their benefits: A review. Int J Food Prop 20(sup2):1700–1741

    CAS  Google Scholar 

  • Rogler G, Andus T (1998) Cytokines in inflammatory bowel disease. World J Surg 22(4):382–389. https://doi.org/10.1007/s002689900401

    Article  CAS  PubMed  Google Scholar 

  • Seyedizade SS, Afshari K, Bayat S, Rahmani F, Momtaz S, Rezaei N et al (2020) Current status of M1 and M2 macrophages pathway as drug targets for inflammatory bowel disease. Arch Immunol Ther Exp 68(10):10. https://doi.org/10.1007/s00005-020-00576-4

    Article  Google Scholar 

  • Sultanova N, Makhmoor T, Abilov Z, Parween Z, Omurkamzinova V, Choudhary MI (2001) Antioxidant and antimicrobial activities of Tamarix ramosissima. J Ethnopharmacol 78(2–3):201–205

    Article  CAS  Google Scholar 

  • Vallance BA, Dijkstra G, Qiu B, van der Waaij LA, van Goor H, Jansen PL et al (2004) Relative contributions of NOS isoforms during experimental colitis: endothelial-derived NOS maintains mucosal integrity. Am J Physiol Gastrointest Liver Physiol 287(4):G865–G74. https://doi.org/10.1152/ajpgi.00187.2004

    Article  CAS  PubMed  Google Scholar 

  • Vezza T, Rodriguez-Nogales A, Algieri F, Utrilla MP, Rodriguez-Cabezas ME, Galvez J (2016) Flavonoids in inflammatory bowel disease: a review. Nutrients 8(4):211. https://doi.org/10.3390/nu8040211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study is partially supported by Tehran University of Medical Sciences (grant No. 97-03-86-40737).

Author information

Authors and Affiliations

Authors

Contributions

RR & AHA designed the study, confirmed the protocol, and edited the manuscript. SM & MB participated in mechanistic studies, data analysis and edited the manuscript. RB participated in data analysis, phytochemical assessments, and edited the manuscript. NG performed the animal study and wrote the manuscript.

Corresponding authors

Correspondence to Amir Hossein Abdolghaffari or Roja Rahimi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing of interest.

Ethics approval

IR.TUMS.VCR.REC.1397.768.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanaatian, N., Momtaz, S., Bahramsoltani, R. et al. Ameliorative effects of standardized extract of Tamarix stricta Boiss. on acetic acid-induced colitis via modulating nitrergic pathways. Biologia 77, 791–801 (2022). https://doi.org/10.1007/s11756-021-00975-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11756-021-00975-8

Keywords

Navigation