Log in

Synthesis of Sulfur-Based Biocompatible Nonionic Surfactants and Their Nano-Vesicle Drug Delivery

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

Nonionic surfactants are capable of forming nano-range vesicles upon self-assembling in an aqueous medium. These vesicles are highly stable, low in toxicity, and cost-effective. Owing to their ability to solubilize both hydrophilic and hydrophobic substances, they are of great interest for drug solubilization and delivery. This study describes the synthesis and characterization of two new nonionic surfactants and their screening for biocompatibility and drug loading potentials in nano-scale niosomal vesicles. They were characterized through mass spectroscopy, 1HNMR, and FT-IR. Their critical micelle concentration (CMC) was investigated using UV–vis spectrophotometry. The biocompatibility study was carried out through blood hemolysis and in vitro cytotoxicity assays. The surfactants have very low CMC values, are highly hemo-compatible, and were nontoxic when tested against a cell culture. They were able to form nano-range niosomal vesicles with large variation in their size. Both new surfactants were able to encapsulate increased amounts of the drug, in this case clarithromycin. The chemical nature of the drug remained intact in the niosomal vesicles. The results suggest that these nonionic surfactants could be promising drug delivery vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kumar RS, Arunachalam S. Synthesis, micellar properties, DNA binding and antimicrobial studies of some surfactant–cobalt (III) complexes. Biophys Chem. 2008;136(2):136–44.

    Article  CAS  Google Scholar 

  2. Ullah I, Shah A, Badshah A, Rana UA, Shakir I, Khan AM, Khan SZ, Rehman ZU. Synthesis, characterization and investigation of different properties of three novel thiourea-based non-ionic surfactants. J Surfactants Deterg. 2014;17(5):1013–9.

    Article  CAS  Google Scholar 

  3. Chen MG, Hu XQ, Fu ML. Novel synthesis of a new surfactant 4-((4-bromophenyl)(dodecyl)amino)-4-oxobutanoic acid containing a benzene ring using a copper catalyst cross-coupling reaction and its properties. J Surfactants Deterg. 2013;16(4):581–5.

    Article  CAS  Google Scholar 

  4. Negm NA, Kandile NG, Mohamad MA. Synthesis, characterization and surface activity of new eco-friendly Schiff bases vanillin derived cationic surfactants. J Surfactants Deterg. 2011;14(3):325–31.

    Article  CAS  Google Scholar 

  5. Holmberg K, Jönsson B, Kronberg B, Lindman B. Surfactants and polymers in aqueous solution. 2nd ed. New York: Wiley; 2002.

    Book  Google Scholar 

  6. Papich MG, Martinez MN. Applying biopharmaceutical classification system (BCS) criteria to predict oral absorption of drugs in dogs: challenges and pitfalls. AAPS J. 2015;17(4):948–64.

    Article  CAS  Google Scholar 

  7. Tiwari G, Tiwari R, Sriwastawa B, Bhati L, Pandey S, Pandey P, Bannerjee SK. Drug delivery systems: an updated review. Int J Pharm Investig. 2012;2(1):2–11.

    Article  Google Scholar 

  8. Çağdaş M, Sezer AD, Bucak S. Liposomes as potential drug carrier systems for drug delivery. In: Sezer AD, editor. Application of nanotechnology in drug delivery. Intech: Croatia; 2014.

    Google Scholar 

  9. Akram M, Bhat IA, Din KU. Self-aggregation of surfactant ethane-1,2-diyl bis(N,N-dimethyl-N-hexadecylammoniumacetoxy) dichloride: tensiometric, microscopic, and spectroscopic studies. J Phys Chem B. 2015;119(8):3499–509.

    Article  CAS  Google Scholar 

  10. Uchegbu IF, Vyasb SP. Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int J Pharm. 1998;172(1):33–70.

    Article  CAS  Google Scholar 

  11. Mahale N, Thakkar P, Mali R, Walunj D, Chaudhari S. Niosomes: novel sustained release nonionic stable vesicular systems—an overview. Adv Colloid Interface Sci. 2012;183:46–54.

    Article  Google Scholar 

  12. Imran M, Shah MR, Ullah F, Ullah S, Elhissi AM, Nawaz W, Ahmad F, Sadiq A, Ali I. Glycoside-based niosomal nanocarrier for enhanced in vivo performance of cefixime. Int J Pharm. 2016;505(1):122–32.

    Article  CAS  Google Scholar 

  13. Junyaprasert VB, Teeranachaideekul V, Supaperm T. Effect of charged and non-ionic membrane additives on physicochemical properties and stability of niosomes. AAPS PharmSciTech. 2008;9(3):851–9.

    Article  CAS  Google Scholar 

  14. Abdelkader H, Alani AW, Alany RG. Recent advances in non-ionic surfactant vesicles (niosomes): self-assembly, fabrication, characterization, drug delivery applications and limitations. Drug deliv. 2014;21(2):87–100.

    Article  CAS  Google Scholar 

  15. Imran M, Shah MR, Ullah F, Ullah S, Elhissi AM, Nawaz W, Ahmad F, Sadiq A, Ali I. Sugar-based novel niosomal nanocarrier system for enhanced oral bioavailability of levofloxacin. Drug deliv. 2016:23(9):3653–64.

  16. Ullah I, Shah A, Badshah A, Shah NA, Tabor R. Surface, aggregation properties and antimicrobial activity of four novel thiourea-based non-ionic surfactants. Colloids Surf A. 2015;464:104–9.

    Article  CAS  Google Scholar 

  17. Cenni E, Granchi D, Avnet S, Fotia C, Salerno M, Micieli D, Sarpietro MG, Pignatello R, Castelli F, Baldini N. Biocompatibility of poly (d,l-lactide-co-glycolide) nanoparticles conjugated with alendronate. Biomaterials. 2008;29(10):1400–11.

    Article  CAS  Google Scholar 

  18. Ullah I, Ahmad K, Shah A, Badshah A, Rana UA, Shakir I, Rehman ZU, Khan SZ. Synthesis, characterization and effect of a solvent mixture on the CMC of a thio-based novel cationic surfactant using a UV–visible spectroscopic technique. J Surf Deterg. 2014;17(3):501–7.

    Article  CAS  Google Scholar 

  19. Munir A, Ullah I, Shah A, Rana UA, Khan SU, Adhikari B, Shah SM, Khan SB, Kraatz HB, Badshah A. Synthesis, spectroscopic characterization and pH dependent electrochemical fate of two non-ionic surfactants. J Electrochem Soc. 2014;161(14):H885–90.

    Article  CAS  Google Scholar 

  20. Essa EA. Effect of formulation and processing variables on the particle size of sorbitan monopalmitate niosomes. Asian J Pharm. 2010;4(4):227.

    Article  CAS  Google Scholar 

  21. Elhissi A, Hidayat K, Phoenix DA, Mwesigwa E, Crean S, Ahmed W, et al. Air-jet and vibrating-mesh nebulization of niosomes generated using a particulate-based proniosome technology. Int J Pharm. 2013;444(1):193–9.

    Article  CAS  Google Scholar 

  22. Bini K, Akhilesh D, Prabhakara P, Kamath JV. Development and characterization of non-ionic surfactant vesicles (niosomes) for oral delivery of lornoxicam. Int J Drug Dev Res. 2012;4:147–54.

    CAS  Google Scholar 

  23. Kazi KM, Mandal AS, Biswas N, Guha A, Chatterjee S, Behera M, Kuotsu K. Niosome: a future of targeted drug delivery systems. J Adv Pharm Tech Res. 2010;1(4):374–80.

    Article  Google Scholar 

  24. Ullah S, Shah MR, Shoaib M, Imran M, Elhissi AM, Ahmad F, Ali I, Shah SW. Development of a biocomaptible creatinine-based niosomal delivery system for enhanced oral bioavailibility of clarithromycin. Drug deliv. 2016;23(9):3480–91.

    Article  CAS  Google Scholar 

  25. Mehta S, **dal N. Tyloxapol niosomes as prospective drug delivery module for antiretroviral drug nevirapine. AAPS PharmSciTech. 2015;16(1):67–75.

    Article  CAS  Google Scholar 

  26. Kalhapure RS, Akamanchi KG. Oleic acid based heterolipid synthesis, characterization and application in self-microemulsifying drug delivery system. Int J Pharm. 2012;425(1):9–18.

    Article  CAS  Google Scholar 

  27. Hägerstrand H, Kralj-Iglič V, Fošnarič M, Bobrowska-Hägerstrand M, Wróbel A, Mrówczyńska L, Söderström T, Iglič A. Endovesicle formation and membrane perturbation induced by polyoxyethyleneglycolalkylethers in human erythrocytes. BBA Biomembranes. 2004;1665(1):191–200.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Raza Shah.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 760 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, I., Shah, M.R., Imran, M. et al. Synthesis of Sulfur-Based Biocompatible Nonionic Surfactants and Their Nano-Vesicle Drug Delivery. J Surfact Deterg 20, 1367–1375 (2017). https://doi.org/10.1007/s11743-017-2023-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-017-2023-z

Keywords

Navigation