Log in

Comparative assessment between liquid culture in static and temporary immersion systems on multiplication, morpho-physiological and biochemical characteristics of Bambusa vulgaris Schrad. ex Wendl. shoots

  • Short Communication
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Key message

Shoots of B. vulgaris cultured in TIS showed better morpho-physiological and biochemical characteristics, without hyperhydricity during in vitro multiplication.

Abstract

The aim of this study was to compare two in vitro culture methods: the liquid culture in static and temporary immersion system (TIS) and in terms of shoot multiplication and morpho-physiological response of shoots of Bambusa vulgaris Schrad. ex Wendl. The morpho-physiological parameters such as number of shoots, shoot length and number of leaves per shoot were measured οn the plants cultivated in vitro. In addition, water content, total phenolic content, and lignin content were determined οn the shoots developed under both conditions. The results of this study show that the use of TIS favored the propagation, morphology and biochemistry of the shoots grown in TIS. In this system, the length, number of shoots and leaves per explant increased. Likewise, the highest values for phenolic and lignin content were obtained. However, shoots grown in static liquid culture medium experienced an increase in water content and hyperhydricity. Lignin and total phenolic content also decreased. This study shows that in vitro multiplication of shoots at TIS can be a successful alternative to the conventional liquid culture system, while maintaining morphological and biochemical quality for reforestation purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Balen B, Tkalec M, Pavoković D, Pevalek-Kozlina B, Krsnik-Rasol M (2009) Growth conditions in in vitro culture can induce oxidative stress in Mammillaria gracilis tissues. J Plant Growth Regul 28(1):36–45. https://doi.org/10.1007/s00344-008-9072-5

    Article  CAS  Google Scholar 

  • Benelli C, De Carlo A (2018) In vitro multiplication and growth improvement of Olea europaea L. cv Canino with temporary immersion system (Plantform™). 3 Biotech 8:317. https://doi.org/10.1007/s13205-018-1346-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Berthouly M, Etienne H (2005) Temporary immersion system: a new concept for use liquid medium in mass propagation. In: Hvoslef-Eide AK, Preil W (eds) Liquid culture systems for in vitro plant propagation. Springer, Dordrecht, pp 165–195

    Chapter  Google Scholar 

  • Catasús Guerra L (2003) Estudio de los bambúes arborescentes cultivados en Cuba. Asociación Cubana de Técnicos Agrícolas y Forestales (ACTAF), La Habana, p 56

    Google Scholar 

  • Chaille L (2001) Optimization of tissue culture protocols for cost-effective production of dracaena, bamboo, and succulent plants. MSc thesis, Department of Tropical Plant and Soil Science, Hawaii

  • Dewir Y (2014) Biochemical and physiological aspects of hyperhydricity in liquid culture system. Production of biomass and bioactive compounds using Bioreactor Technology. Springer Netherlands, p 693–709. https://doi.org/10.1007/978-94-017-9223-3_26

  • Dixon R, Paiva N (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7(7):1085–1097. https://doi.org/10.1105/tpc.7.7.1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Etienne H, Berthouly M (2002) Temporary immersion systems in plant micropropagation. Plant Cell Tissue Organ Cult 69(3):215–231. https://doi.org/10.1023/A:10156688610465

    Article  Google Scholar 

  • García-Ramírez Y, Freire-Seijo M, Pérez B, Hurtado O (2010) Efecto del estado físico del medio de cultivo y el número de subcultivos en la fase de multiplicación in vitro de plantas de Bambusa vulgaris var. vulgaris. Schrad. ex Wendl. Biotecnol Veg 10(2):113–119

    Google Scholar 

  • García-Ramírez Y, Gonzáles MG, Mendoza EQ, Seijo MF, Cárdenas ML, Moreno-Bermúdez L, Ribalta OH (2014) Effect of BA treatments on morphology and physiology of proliferated shoots of Bambusa vulgaris Schrad. Ex Wendl in temporary immersion. Am J Plant Sci 5(02):205–211. https://doi.org/10.4236/ajps.2014.52027

    Article  CAS  Google Scholar 

  • García-Ramírez Y, González-González M, Freire-Seijo M, La O-Cárdenas M, León-Quintana M, Roque-Morales B, Rivero-Quintana L (2015) Effect of morphological and physiological development on the acclimatization of in vitro plants of Bambusa vulgaris Schrad ex Wendl in liquid culture medium. Open Access Libr J 2(09):1–6. https://doi.org/10.4236/oalib.110178

    Article  Google Scholar 

  • García-Ramírez Y, González-González M, García S, Freire-Seijo M, Pérez M, Trujillo Á, Barbon R (2016) Efecto de la densidad de inóculo sobre la morfología y fisiología de los brotes de Bambusa vulgaris Schrad. ex Wendl cultivados en Sistema de Inmersión Temporal. Biotecnol Veg 16(4):231–237

    Google Scholar 

  • García-Ramírez Y, Barrera G, Freire-Seijo M, Barbón R, Concepción-Hernández M, Mendoza-Rodríguez M, Torres-García S (2019) Effect of sucrose on physiological and biochemical changes of proliferated shoots of Bambusa vulgaris Schrad. Ex Wendl in temporary immersion. Plant Cell Tissue Organ Cult 137(2):239–247. https://doi.org/10.1007/s11240-019-01564-z

    Article  CAS  Google Scholar 

  • García-Ramírez Y, Freire-Seijo M, Barbón R, Torres-García S (2021) Efecto del 6-BAP y el tiempo de inmersión en la multiplicación de brotes de Bambusa vulgaris Schrad. ex Wendl en sistemas de inmersión temporal. Biotecnol Apl 38(3):3201–3205

    Google Scholar 

  • García-Ramírez Y, Freire-Seijo M, Pérez B, Hurtado O (2010a) Establecimiento in vitro de Bambusa vulgaris var vulgaris Schrad. ex Wendl. en diferentes épocas del año. Biotecnol Veg 10(3):151–156

    Google Scholar 

  • Georgiev V, Schumann A, Pavlov A, Bley T (2014) Temporary immersion systems in plant biotechnology. Eng Life Sci 14:607–621. https://doi.org/10.1002/elsc.201300166

    Article  CAS  Google Scholar 

  • Grace S (2005) Phenolics antioxidants. In: Smirnoff N (ed) Antioxidants and reactive oxygen species in plants. Blackwell, Oxford, pp 141–168

    Chapter  Google Scholar 

  • Gutiérrez L, López-Franco R, Morales-Pinzón T (2016) Micropropagation of Guadua angustifolia Kunth (Poaceae) using a temporary immersion system RITA®. Afr J Biotechnol 15(28):1503–1510. https://doi.org/10.5897/AJB2016.15390

    Article  Google Scholar 

  • Kevers C, Franck T, Strasser R, Dommes J, Gaspar T (2004) Hyperhydricity of micropropagated shoots: a typically stress-induced change of physiological state. Plant Cell Tissue Organ Cult 77(2):181–191. https://doi.org/10.1023/B:TICU.0000016825.18930.e4

    Article  Google Scholar 

  • Kirk TK, Obst JR (1988) Lignin Determination. In: Wood WA, Kellogg ST (eds) Methods in enzymology, volume 161, biomass, part B: lignin, pectin, and chitin. Academic Press, New York, p 87–101. https://doi.org/10.1016/0076-6879(88)61014-7

  • León M, Freire M, Suárez M (2010) Propagación vegetative de Bambusa vulgaris Schrad. ex J.C. Wendl. Instructivo técnico no. 001-2010. Santa Clara, Cuba, p 1–4

  • Martinez-Estrada E, Islas-Luna B, Perez-Sato JA, Bello-Bello JJ (2019) Temporary immersion improves in vitro multiplication and acclimatization of Anthurium andreanum Lind. Sci Hortic 249:185–191. https://doi.org/10.1016/j.scienta.2019.01.053

    Article  Google Scholar 

  • Mongkolsook Y, Tanasombut M, Sumkaew R, Likitthammanit P, Wongwean P (2005) Temporary immersion system (TIS) for Micropropagation of Dendrocalamus latiflorus in Commercial Production. Kasetsart University, Bangkok, pp 33–40

    Google Scholar 

  • Mudoi K, Borthakur M (2012) Factors affecting the frequency of in vitro flowering of Bambusa balcooa Roxb. Indian J Plant Physiol 17:37–43

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Quiala E, Cañal M, Meijón M, Rodríguez R, Chávez M, Valledor L, Barbón R (2012) Morphological and physiological responses of proliferating shoots of teak to temporary immersion and BA treatments. Plant Cell Tissue Organ Cult 109(2):223–234. https://doi.org/10.1007/s11240-011-0088-3

    Article  CAS  Google Scholar 

  • Ramanayake S, Meemaduma V, Weerawardene T (2006) In vitro shoot proliferation and enhancement of rooting for the large-scale propagation of yellow bamboo (Bambusa vulgaris ‘Striata’). Sci Hortic 110(1):109–113. https://doi.org/10.1016/j.scienta.2006.06.016

    Article  CAS  Google Scholar 

  • Regueira M, Rial E, Blanco B, Bogo B, Aldrey A, Correa B, Vidal N (2018) Micropropagation of axillary shoots of Salix viminalis using a temporary immersion system. Trees 32(1):61–71. https://doi.org/10.1007/s00468-017-1611-x

    Article  CAS  Google Scholar 

  • Saher S, Piqueras A, Hellin E, Olmos E (2004) Hyperhydricity in micropropagated carnation shoots: the role of oxidative stress. Physiol Plant 120(1):152–161. https://doi.org/10.1111/j.0031-9317.2004.0219.x

    Article  CAS  PubMed  Google Scholar 

  • San José M, Blázquez N, Cernadas M, Janeiro L, Cuenca B, Sánchez C, Vidal N (2020) Temporary immersion systems to improve alder micropropagation. Plant Cell Tissue Organ Cult 143(2):265–275. https://doi.org/10.1007/s11240-020-01937-9

    Article  CAS  Google Scholar 

  • Sandhu M, Wani S, Jiménez V (2018) In vitro propagation of bamboo species through axillary shoot proliferation: a review. Plant Cell Tissue Organ Cult 132(1):27–53. https://doi.org/10.1007/s11240-017-1325-1

    Article  CAS  Google Scholar 

  • Sharma S, Kalia S, Kalia R (2012) Rapid in vitro regeneration from 40-year-old clump of Bambusa nutans wall. Ex Munro. J Indian Bot Soc 91(4):365–378

    Google Scholar 

  • Vidal N, Sánchez C (2019) Use of bioreactor systems in the propagation of forest trees. Eng Life Sci 19(12):896–915. https://doi.org/10.1002/elsc.201900041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziv M (2005) Simple bioreactors for mass propagation of plants. In: Hvoslef-Eide AK, Preil W (eds) Liquid culture systems for in vitro plant proagation. Springer, Dordrecht, p 588

    Google Scholar 

Download references

Acknowledgements

The work was financially supported by Instituto de Biοtecnοgía de las Plantas, Universidad Central "Marta Abreu" de Las Villas Santa Clara, Vila Clara.

Funding

The authors declare that data that support the findings of this study are available for this journal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yudith García-Ramírez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by M. Lambardi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Ramírez, Y., Freire-Seijo, M., Rodríguez, R.B. et al. Comparative assessment between liquid culture in static and temporary immersion systems on multiplication, morpho-physiological and biochemical characteristics of Bambusa vulgaris Schrad. ex Wendl. shoots. Acta Physiol Plant 46, 11 (2024). https://doi.org/10.1007/s11738-023-03637-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-023-03637-1

Keywords

Navigation