Log in

Proteomic identification of lipid-bodies-associated proteins in maize seeds

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Seeds store lipids in the form of lipid bodies (LBs) for germination and early seedling growth. LBs can be easily isolated by the established floating-extraction method from oleaginous seeds containing a large quantity of LBs. Compared to oleaginous seeds, maize and other cereal seeds contain a small quantity of LBs, so it is difficult to isolate a sufficient quantity of LBs from their embryos for 2DE-based proteomic analysis. At present, only a limited number of LBs-associated proteins in maize embryos have been identified. We here reported a modified floating-extraction method using polyvinylidene difluoride disc to collect floating LBs from maize embryo extracts. The LBs-associated proteins were resolved with two-dimensional electrophoresis and identified with mass spectrometry. As a result, several well-known LBs proteins were identified in the purified LBs fraction, such as oleosin, caleosin, and steroleosin. We also identified another two LBs proteins, corticosteroid 11-β-dehydrogenase 1 and 11-β-hydroxysteroid dehydrogenase-like 5. In particular, steroleosin, corticosteroid 11-β-dehydrogenase 1, 11-β-hydroxysteroid dehydrogenase-like, and hydroxyproline-rich glycoprotein were found as the most abundant protein components in maize LBs. The data set of maize LBs subproteome would provide insights into functional research of LBs-associated proteins during seed development and germination. Additionally, the protocol developed here is expected to be applicable for isolating LBs in other seeds or tissues containing a low quantity of LBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baud S, Dichow NR, Kelemen Z, d’Andréa S, To A, Berger N et al (2009) Regulation of HSD1 in seeds of Arabidopsis thaliana. Plant Cell Physiol 50:1463–1478

    Article  CAS  PubMed  Google Scholar 

  • Capuano F, Beaudoin F, Napier JA, Shewry PR (2007) Properties and exploitation of oleosins. Biotechnol Adv 25:203–206

    Article  CAS  PubMed  Google Scholar 

  • Chapman KD, Dyer JM, Mullen RT (2012) Biogenesis and functions of lipid droplets in plants: thematic review series: Lipid droplet synthesis and metabolism: from yeast to man. J Lipid Res 53:215–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • d’Andréa S, Canonge M, Beopoulos A, Jolivet P, Hartmann MA, Miquel M et al (2007) At5g50600 encodes a member of the short-chain dehydrogenase reductase superfamily with 11β- and 17β-hydroxy steroid dehydrogenase activities associated with Arabidopsis thaliana seed oil bodies. Biochimie 89:222–229

    Article  PubMed  Google Scholar 

  • Das AK, Cohen PTW, Barford D (1998) The structure of the tetratricopeptide repeats of protein phosphatase 5: implications for TPR-mediated protein–protein interactions. EMBO J 17:1192–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding YF, Zhang SY, Yang L, Na HM, Zhang P, Zhang HN et al (2013) Isolating lipid droplets from multiple species. Nat Protoc 8:43–51

    Article  CAS  PubMed  Google Scholar 

  • Dinis AM, Coutinho AP (2009) Interaction of lipid bodies with other cell organelles in the maturing pollen of Magnolia × soulangeana (Magnoliaceae). Protoplasm 238:35–46

    Article  CAS  Google Scholar 

  • Dyas L, Goad LJ (1994) The occurrence of free and esterified sterols in the oil bodies isolated from maize seed scutella and a celery cell suspension culture. Plant Physiol Biochem 32:799–805

    CAS  Google Scholar 

  • Ebbinghaus S, Kim SJ, Heyden M, Yu X, Gruebele M, Leitner DM et al (2008) Protein sequence- and pH-dependent hydration probed by terahertz spectroscopy. J Am Chem Soc 130:2374–2375

    Article  CAS  PubMed  Google Scholar 

  • Farese RV, Walther TC (2009) Lipid droplets finally get a little R-E-S-P-E-C-T. Cell 139:855–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez DE, Qu R, Huang AH, Staehelin LA (1988) Immunogold localization of the L3 protein of maize lipid bodies during germination and seedling growth. Plant Physiol 86:270–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frandsen GI, Mundy J, Tzen JTC (2001) Oil bodies and their associated proteins, oleosin and caleosin. Physiol Plant 112:301–307

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto T, Parton RG (2011) Not just fat: the structure and function of the lipid droplet. Cold Spring Harb Perspect Biol 3:a004838

    Article  PubMed  PubMed Central  Google Scholar 

  • Furse S, Liddell S, Ortori CA, Williams HE, Neylon DC, Scott DJ et al (2013) The lipidome and proteome of oil bodies from Helianthus annuus (common sunflower). J Chem Biol 6:63–676

    Article  PubMed  PubMed Central  Google Scholar 

  • Gorovits R, Fridman L, Kolot M, Rotem O, Ghanim M, Shriki O et al (2016) Tomato yellow leaf curl virus confronts host degradation by sheltering in small/midsized protein aggregates. Virus Res 213:304–313

    Article  CAS  PubMed  Google Scholar 

  • Graham IA (2008) Seed storage oil mobilization. Ann Rev Plant Biol 59:115–142

    Article  CAS  Google Scholar 

  • Herman EM (2009) Seed oil body ontogeny. Microsc Microanal 15:874–875

    Article  Google Scholar 

  • Horn PJ, James CN, Gidda SK, Kilaru A, Dyer JM, Mullen RT et al (2013) Identification of a new class of lipid droplet-associated proteins in plants. Plant Physiol 162:1926–1936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh K, Huang AH (2004) Endoplasmic reticulum, oleosins, and oils in seeds and tapetum cells. Plant Physiol 136:3427–3434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu ZY, Wang XF, Zhan GM, Liu GH, Hua W, Wang HZ (2009) Unusually large oil bodies are highly correlated with lower oil content in Brassica napus. Plant Cell Rep 28:541–549

    Article  CAS  PubMed  Google Scholar 

  • Huang AHC (1992) Oil bodies and oleosins in seeds. Ann Rev Plant Physiol Mol Biol 43:177–200

    Article  CAS  Google Scholar 

  • Huang AHC (1996) Oleosin and oil bodies in seeds and other organs. Plant Physiol 110:1055–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jolivet P, Roux E, D’Andrea S, Davanture M, Negroni L, Zivy M et al (2004) Protein composition of oil bodies in Arabidopsis thaliana ecotype WS. Plant Physiol Biochem 42:501–509

    Article  CAS  PubMed  Google Scholar 

  • Jolivet P, Boulard C, Bellamy A, Larré C, Barre M, Rogniaux H et al (2009) Protein composition of oil bodies from mature Brassica napus seeds. Proteomics 9:3268–3284

    Article  CAS  PubMed  Google Scholar 

  • Katavic V, Agrawal GK, Hajduch M, Harris SL, Thelen JJ (2006) Protein and lipid composition analysis of oil bodies from two Brassica napus cultivars. Proteomics 6:4586–4598

    Article  CAS  PubMed  Google Scholar 

  • Krahmer N, Guo Y, Farese RV, Walther TC (2009) SnapShot: lipid droplets. Cell 139:1024–1024.e1

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 222:680–685

    Article  Google Scholar 

  • Lagos CF, Vecchiola A, Allende F, Fuentes CA, Tichauer JE, Valdivia C et al (2014) Identification of novel 11β-HSD1 inhibitors by combined ligand- and structure-based virtual screening. Mol Cell Endocrinol 384:71–82

    Article  CAS  PubMed  Google Scholar 

  • Lersten NR, Czlapinski AR, Curtis JD, Freckmann R, Horner HT (2006) Oil bodies in leaf mesophyll cells of angiosperms: overview and a selected survey. Am J Bot 93:1731–1739

    Article  PubMed  Google Scholar 

  • Lin LJ, Tzen JT (2004) Two distinct steroleosins are present in seed oil bodies. Plant Physiol Biochem 42:601–618

    Article  CAS  PubMed  Google Scholar 

  • Lin LJ, Tai SS, Peng CC, Tzen JT (2002) Steroleosin, a sterol-binding dehydrogenase in seed oil bodies. Plant Physiol 128:1200–1211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ludwig R, Appelhagen A (2005) Calculation of clathrate-like water clusters including H2O-buckminsterfullerene. Angew Chem Int Ed 44:811–815

    Article  CAS  Google Scholar 

  • Meesapyodsuk D, Qiu X (2011) A peroxygenase pathway involved in the biosynthesis of epoxy fatty acids in oat. Plant Physiol 157:454–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Millichip M, Tatham AS, Jackson F, Griffiths G, Shewry PR, Stobart AK (1996) Purification and characterization of oil-bodies (oleosomes) and oil-body boundary proteins (oleosins) from the develo** cotyledons of sunflower (Helianthus annuus L.). Biochem J 314:333–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy DJ (2001) Biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res 40:325–438

    Article  CAS  PubMed  Google Scholar 

  • Murphy DJ (2012) The dynamic roles of intracellular lipid droplets: from archaea to mammals. Protoplasma 249:541–585

    Article  CAS  PubMed  Google Scholar 

  • Murphy DJ, Vance J (1999) Mechanisms of lipid-body formation. Trends Biol Sci 24:109–115

    Article  CAS  Google Scholar 

  • Murphy S, Martin S, Parton RG (2009) Lipid droplet-organelle interactions; sharing the fats. BBA-Mol Cell Biol Lipids 1791:441–447

    Article  CAS  Google Scholar 

  • Naested H, Frandsen GI, Jauh GY, Hernandez-Pinzon I, Nielsen HB, Murphy DJ et al (2000) Caleosins: Ca2+-binding proteins associated with lipid bodies. Plant Mol Biol 44:463–476

    Article  CAS  PubMed  Google Scholar 

  • Nelson DR, Nebert DW (2018) Cytochrome P450 (CYP) gene superfamily. In: eLS. Wiley, Chichester. https://doi.org/10.1002/9780470015902.a0005667.pub3

  • Nikiforidis CV, Kiosseoglou V, Scholten E (2013) Oil bodies: an insight on their microstructure—maize germ vs. sunflower seed. Food Res Int 52:136–141

    Article  CAS  Google Scholar 

  • Ning F, Wu XL, Zhang H, Wu ZK, Niu LJ, Yang H et al (2017) Accumulation profiles of embryonic salt-soluble proteins in maize hybrids and parental lines indicate matroclinous inheritance: a proteomic analysis. Front Plant Sci 8:1824

    Article  PubMed  PubMed Central  Google Scholar 

  • Niu LJ, Yuan HY, Gong FP, Wu XL, Wang W (2018) Protein extraction methods shape much of the extracted proteomes. Front Plant Sci 9:802

    Article  PubMed  PubMed Central  Google Scholar 

  • Purkrtova Z, d’Andrea S, Jolivet P, Lipovova P, Kralova B, Kodicek M et al (2007) Structural properties of caleosin: a MS and CD study. Arch Biochem Biophys 46:4335–4343

    Google Scholar 

  • Roberts MR, Hodge R, Ross JHE, Sorensen A, Murphy DJ, Draper J et al (1993) Characterization of a new class of oleosins suggests a male gametophyte-specific lipid storage pathway. Plant J 3:629–636

    Article  CAS  PubMed  Google Scholar 

  • Ross JHE, Sanchez J, Millan F, Murphy DJ (1993) Differential presence of oleosins in oleogenic seed and mesocarp tissues in olive (Olea europea) and avocado (Persea americana). Plant Sci 93:203–210

    Article  CAS  Google Scholar 

  • Schmidt MA, Herman EM (2008) Suppression of soybean oleosin produces micro-oil bodies that aggregate into oil body/ER complexes. Mol Plant 1:910–924

    Article  CAS  PubMed  Google Scholar 

  • Shi Q, Araie H, Bakku RK, Fukao Y, Rakwal R, Suzuki I et al (2015) Proteomic analysis of lipid body from the alkenone-producing marine haptophyte alga Tisochrysis lutea. Proteomics 15:4145–4158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimada TL, Hara-Nishimura I (2010) Oil-body-membrane proteins and their physiological functions in plants. Biol Pharm Bullet 33:360–363

    Article  CAS  Google Scholar 

  • Siegler H, Valerius O, Ischebeck T, Popko J, Tourasse NJ, Vallon O et al (2017) Analysis of the lipid body proteome of the oleaginous alga Lobosphaera incisa. BMC Plant Biol 17:98

    Article  PubMed  PubMed Central  Google Scholar 

  • Siloto RM, Findlay K, Lopez-Villalobos A, Yeung EC, Nykiforuk CL, Moloney MM (2006) The accumulation of oleosins determines the size of seed oil bodies in Arabidopsis. Plant Cell. 18:1961–1974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stroud H, Otero S, Desvoyes B, Ramírez-Parra E, Jacobsen SE, Gutierrez C (2012) Genome-wide analysis of histone H3.1 and H3.3 variants in Arabidopsis thaliana. Proc Natl Acad Sci USA 109:5370–5375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ting JT, Lee K, Ratnayake C, Platt KA, Balsamo RA, Huang AH (1996) Oleosin genes in maize kernels having diverse oil contents are constitutively expressed independent of oil contents. Size and shape of intracellular oil bodies are determined by the oleosins/oils ratio. Planta 199:158–165

    Article  CAS  PubMed  Google Scholar 

  • Tnani H, López I, Jouenne T, Vicient CM (2011) Protein composition analysis of oil bodies from maize embryos during germination. J Plant Physiol 168:510–513

    Article  CAS  PubMed  Google Scholar 

  • Tnani H, López I, Jouenne T, Vicient CM (2012) Quantitative subproteomic analysis of germinating related changes in the scutellum oil bodies of Zea mays. Plant Sci 191–192:1–7

    Article  PubMed  Google Scholar 

  • Tomlinson JW, Walker EA, Bujalska IJ, Draper N, Lavery GG, Cooper MS et al (2004) 11 beta-hydroxysteroid dehydrogenase type 1: a tissue-specific regulator of glucocorticoid response. Endocr Rev 25:831866

    Article  Google Scholar 

  • Tzen JTC, Huang AHC (1992) Surface structure and properties of plant seed oil bodies. J Cell Biol 117:327–335

    Article  CAS  PubMed  Google Scholar 

  • Tzen JTC, Caom Y, Laurent P, Ratnayake C, Huang A (1993) Lipids, proteins and structure of seed oil bodies from diverse species. Plant Physiol 101:267–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tzen JTC, Peng CC, Cheng DJ, Chen ECF, Chiu JMH (1997) A new method for seed oil body purification and examination of oil body integrity following germination. J Biochem 121:762–768

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Wu XL, Ku LX, Chen YH, Wang W (2016) Evaluation of three protein-extraction methods for proteome analysis of maize leaf midrib, a compound tissue rich in sclerenchyma cells. Front Plant Sci 7:856

    PubMed  PubMed Central  Google Scholar 

  • Waschatko G, Billecke N, Schwendy S, Jaurich H, Bonn M, Vilgis TA et al (2016) Label-free in situ imaging of oil body dynamics and chemistry in germination. J R Soc Interface 13:20160677

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilkins MR, Gasteiger E, Tonella L, Ou K, Tyler M, Sanchez JC et al (1998) Protein identification with N and C-terminal sequence tags in proteome projects. J Mol Biol 278:599–608

    Article  CAS  PubMed  Google Scholar 

  • Wood K, Frölich A, Paciaroni A, Moulin M, Härtlein M, Zaccai G et al (2008) Coincidence of dynamical transitions in a soluble protein and its hydration water: direct measurements by neutron scattering and MD simulations. J Am Chem Soc 130:4586–4587

    Article  CAS  PubMed  Google Scholar 

  • Wu XL, Scali M, Faleri C, Wang W (2013) Polyclonal antibody preparation and immunolocalization of maize (Zea mays) seed protein EMB564. Plant Omics 6:359–363

    CAS  Google Scholar 

  • Wu XL, Gong FP, Yang L, Tai FJ, Hu XL, Wang W (2014a) Proteomic analysis reveals differential accumulation of small HSPs and late embryogenesis abundant proteins between ABA-deficient mutant vp5 seeds and wild-type Vp5 seeds in maize. Front Plant Sci 5:801

    Article  PubMed  Google Scholar 

  • Wu XL, **ong EH, Wang W, Scali M, Cresti M (2014b) Universal sample preparation method integrating trichloroacetic acid/acetone precipitation with phenol extraction for crop proteomic analysis. Nat Protoc 9:362–374

    Article  CAS  PubMed  Google Scholar 

  • Zechner R, Zimmermann R, Eichmann TO, Kohlwein SD, Haemmerle G, Lass A et al (2012) FAT SIGNALS–lipases and lipolysis in lipid metabolism and signaling. Cell Metab 15:279–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zehmer JK, Huang YG, Peng G, Pu J, Anderson RG, Liu P (2009) A role for lipid droplets in inter-membrane lipid traffic. Proteomics 9:914–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zienkiewicz A, Zienkiewicz K, Rejón JD, Alché JD, Castro AJ, Rodríguez-García MI (2014) Olive seed protein bodies store degrading enzymes involved in mobilization of oil bodies. J Exp Bot 65:103–115

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Program for Innovative Research Team (in Science and Technology) in University of Henan Province (15IRTSTHN015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Liu or Wei Wang.

Additional information

Communicated by M. Stobiecki.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, C., Liu, A., Niu, L. et al. Proteomic identification of lipid-bodies-associated proteins in maize seeds. Acta Physiol Plant 41, 70 (2019). https://doi.org/10.1007/s11738-019-2854-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-019-2854-5

Keywords

Navigation