Log in

Gender-related differences in adaptability to drought stress in the dioecious tree Ginkgo biloba

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Ginkgo (Ginkgo biloba) as a precious relict plant is cultivated around the world, and it is also a typical dioecious tree. Drought is a major environmental stress that limits the growth and development of ginkgo. Although many studies have examined the impact of drought on ginkgo, few have investigated gender-related under drought treatment in the species. In our research, we examined comparative morphology, physiology and the ultrastructure of mesophyll cell in male and female ginkgoes to determine which gender shows superior adaptability to drought stress. Two-year-old cutting-propagated male and female ginkgoes suffered to drought treatment. The experiments showed that drought significantly limited growth and development, disrupted photosynthesis, and destoried the antioxidant protection system in both male and female ginkgoes. When the gender differences in the species were compared, females showed better growth, activities of SOD and POD, concentrations of chl t, chl a/b ratio and proline, P n, C i, g s, qP and NPQ under drought, but lower concentrations of H2O2 and O2 , and relative electrolyte leakage. In the aspect of cell ultrastructure, female plants showed a slower rate of cell breakdown and chloroplast decomposition under drought stress than males. The results indicate that female plants of ginkgo show superior growth performance and self-protective mechanisms and higher photosynthetic capacity than male plants under drought stress. Thus, we conclude that female individuals of ginkgo possess better adaptability to drought stress than male individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

RWC:

Relative water content

REL:

Relative electrolyte leakage

Chl t :

Total chlorophyll

Chl a/b :

Chlorophyll a/b ratio

SOD:

Superoxide dismutase

POD:

Peroxidase

APX:

Ascorbate peroxidase

PSII:

Photosystem II

Fv/Fm :

Maximum PSII photochemical efficiency

qP:

Photochemical quenching coefficient

NPQ:

Non-photochemical quenching coefficient

P n :

Net photosynthetic rate

C i :

Intercellular CO2 concentration

g s :

Stomatal conductance

OD:

Optical density

WUEi :

Intrinsic water use efficiency

WUE:

Water use efficiency

ROS:

Reactive oxygen species

DAD:

Days after drought

References

  • Ain-Lhout F, Zunzunegui M, Barradas MCD, Tirado R, Clavijo A, Novo FG (2001) Comparison of proline accumulation in two mediterranean shrubs subjected to natural and experimental water deficit. Plant Soil 230:175–183

    Article  CAS  Google Scholar 

  • Ambrose AR, Baxter WL, Wong CS, Næsborg RR, Williams CB, Dawson TE (2015) Contrasting drought-response strategies in California redwoods. Tree Physiol 35:453–469

    Article  PubMed  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts polyphenoloxidase in beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Breia R, Vieira S, Silva JM, Geros H, Cunha A (2013) Map** grape berry photosynthesis by chlorophyll fluorescence imaging: the effect of saturating pulse intensity in different tissues. Photochem Photobiol 89:579–585

    Article  CAS  PubMed  Google Scholar 

  • Brilli F, Barta C, Fortunati A, Lerdau M, Loreto F, Centritto M (2007) Response of isoprene emission and carbon metabolism to drought in white poplar (Populus alba) saplings. New Phytol 175:244–254

    Article  CAS  PubMed  Google Scholar 

  • Chaves MM (1991) Effects of water deficits on carbon assimilation. J Exp Bot 42:1–16

    Article  CAS  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought from genes to the hole plant. Funct Plant Biol 30:239–264

    Article  CAS  Google Scholar 

  • Chen L, Chang L, Cao FL, Wang GB, Dong XW (2013) Effects of temperature and soil water deficit on the plavonoid content and activities of enzymes involved in Ginkgo leaves. Acta Botanica Boreali-Occidentalia Sinica 33:0755–0762

    CAS  Google Scholar 

  • Chen L, Han Y, Jiang H, Korpelainen H, Li C (2011) Nitrogen nutrient status induces sexual differences in responses to cadmium in Populus yunnanensis. J Exp Bot 62(14):5037–5050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Zhang S, Zhao H (2010) Sex-related adaptive responses to interaction of drought and salinity in Populus yunnanensis. Plant Cell Environ 33:1767–1778

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Lin FZ, Yang H, Yue L, Hu F, Wang JL, Luo YY, Cao FL (2014) Effect of varying NaCl doses on flavonoid production in suspension cells of Ginkgo biloba: relationship to chlorophyll fluorescence, ion homeostasis, antioxidant system and ultrastructure. Acta Physiol Plant 36:3173–3187

    Article  CAS  Google Scholar 

  • Cocozza C, Cherubini P, Regier N, Saurer M, Frey B, Tognetti R (2010) Early effects of water deficit on two parental clones of Populus nigra grown under different environmental conditions. Funct Plant Biol 37:244–254

    Article  Google Scholar 

  • Correia O, Barradas M C D (2000) Ecophysiological differences between male and female plants of Pistacia lentiscus L. Plant Ecol 149(2):131–142

    Article  Google Scholar 

  • Daleen L, Alexander JV, Emma AVG, Mark T (2014) Physiological responses of a fynbos legume, Aspalathus linraris to drought stress. S Afr J Bot 94:218–223

    Article  Google Scholar 

  • Dalla-Vecchia F, La RN, Moro I, De FS, Andreoli C, Rascio N (2005) Morphogenetic, ultrastructural and physiological damages suffered by submerged leaves of Elodea canadensis exposed to cadmium. Plant Sci 168:329–338

    Article  CAS  Google Scholar 

  • Dawson TE, Ehleringer JR (1993) Gender-specific physiology, carbon isotope discrimination and habitat distribution in boxelder. Acer Negundo Ecol 74:798–815

    Google Scholar 

  • Espirito-Santo MM, Madeira BG, Neves FS, Faria ML, Fagundes M, Fernandes GW (2003) Sexual differences in reproductive phenology and their consequences for the demography of Baccharis dracunculifolia (Asteraceae), a dioecious tropical shrub. Ann Bot 91:13–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol 59:309–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson SI (2003) Sugar and phytohormone response pathways: navigating a signaling network. J Exp Bot 55:253–264

    Article  PubMed  Google Scholar 

  • He XY, Fu SL, Chen W, Zhao TH, Xu S, Tuba Z (2007) Changes in effects of ozone exposure on growth, photosynthesis, and respiration of Ginkgo biloba in Shenyang urban area. Photosynthetica 45:555–561

    Article  CAS  Google Scholar 

  • He M, Meng M, Shi DW, Wang T, **e YF (2015) On gender difference of dioecious plant in response to drought stress. J Plant Resour Environ 24:99–106

    Google Scholar 

  • Hosam OE, Mohamed ZMS (2015) Morphological and physiological responses and drought resistance enhancement of ornamental shrubs by trinexapacethyl application. Sci Hortic 189:1–11

    Article  Google Scholar 

  • Jiang XM, Hu JY, Qi WH, Chen GD, Xu X (2009) Different physiological responses of male and female Ginkgo biloba (Ginkgoaceae) seedlings to salt stress. Acta Botanica Yunnanica 31:447–453

    Article  CAS  Google Scholar 

  • Jiang XM, Qi WH, **ao J, Xu X, Chen J (2013) Effects of exogenous proline on physiological and biochemical features of salt-stress female and male Ginkgo biloba L. seedlings. Plant Physiol J 49:579–585

    CAS  Google Scholar 

  • ** J, Jiang H, Yu SQ, Zhou SG (2008) Sex-linked photosynthetic physiologic research and the evolutionary ecological analysis in living fossil plant, Ginkgo biloba L. Acta Ecol Sin 28:1128–1136

    Article  CAS  Google Scholar 

  • Kang HM, Chen K, Bai J, Wang G (2012) Antioxidative system’s responses in the leaves of six Caragana species during drought stress and recovery. Acta Physiologiae Plantarum 34:2145–2154

    Article  CAS  Google Scholar 

  • Kochba J, Lavee S, Spiegel-Roy P (1977) Differences in peroxidase activity and isoenzymes in embryogenic and nonembryogenic ‘Shamouti’ orange ovular callus lines. Plant Cell Physiol 18:463–467

    CAS  Google Scholar 

  • Lei YB, Yin CY, Li CY (2006) Differences in some morphological, physiological, and biochemical responses to drought stress in two contrasting populations of Populus przewalskii. Physiol Plant 127:182–191

    Article  CAS  Google Scholar 

  • Li DY (1996) Different response to water deficit in male and female plants of Buffalo grass. Acta Horticulturae Sinica 23:62–66

    Google Scholar 

  • Li C, Ren J, Luo J et al (2004) Sex-specific physiological and growth responses to water stress in Hippophae rhamnoides L. populations. Acta Physiologiae Plantarum 26:123–129

    Article  Google Scholar 

  • Li CY, Yang YQ, Junttila O, Palva ET (2005) Sexual differences in cold acclimation and freezing tolerance development in sea buckthorn (Hippophae rhamnoides L.) ecotypes. Plant Sci 168:1365–1370

    Article  CAS  Google Scholar 

  • Li C, Xu G, Zang R, Korpelainen H, Berninger F (2007) Sex-related differences in leaf morphological and physiological responses in Hippophae rhamnoides along an altitudinal gradient. Tree Physiol 27:399–406

    Article  CAS  PubMed  Google Scholar 

  • Li GL, Wu HX, Sun YQ, Zhang SY (2013) Response of chlorophyll fluorescence parameters to drought stress in sugar beet seedlings. Russ J Plant Physiol 60:337–342

    Article  CAS  Google Scholar 

  • Liu JP, Duan J (2013) Humulus scandens gender differences in response to water stress in the vegetative growth stage. Acta Prataculturae Sinica 22:243–249

    Google Scholar 

  • Liu D, Chen GX, Wei XD, Tang JH, Yang YL, Yuan ZY, Li W, Cui HY (2011) Effects of drought on physiological and biochemical characteristics of leaves and ultrastructure of chloroplasts in Ginkgo biloba L. J Nan**g Normal Univ (Natural Science Edition) 34(2):64–69

    Google Scholar 

  • Lu T, He XY, Chen W, Yan K, Zhao TH (2009) Effects of elevated O3 and/or elevated CO2 on lipid peroxidation and antioxidant systems in Ginkgo biloba leaves. Bull Environ Contam Toxicol 83:92–96

    Article  CAS  PubMed  Google Scholar 

  • Marshall J, Rutledge R, Blumwald E, Dumboroff E (2000) Reduction in turgid water volume in jack pine, white spruce and black spruce in response to drought and paclobutrazol. Tree Physiol 20:701–707

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nikolaeva MK, Maevskaya SN, Shugaev AG, Bukhov NG (2010) Effect of drought on chlorophyll content and antioxidant enzyme activities in leaves of three wheat cultivars varying in productivity. Russ J Plant Physiol 57:87–95

    Article  CAS  Google Scholar 

  • Niwa Y, Sasaki Y (2003) Plant self-defense mechanisms against oxidative injury and protection of the forest by planting trees of triploids and tetraploids. Ecotoxicol Environ Saf 55:70–81

    Article  CAS  PubMed  Google Scholar 

  • Obeso JR, Retuerto R (2002) Sexual dimorphism in holly Ilex aquifolium: cost of reproduction, sexual selection or physiological differentiation. Rev Chil Hist Nat 75:67–77

    Article  Google Scholar 

  • Qian QQ, Zai WS (2006) Effects of exogenous Silicon on active oxygen scavenging systems in chloroplasts of Cucumber (Cucumis sativus L.) seedlings under salt stress. J Plant Physiol Mol Biol 32:107–112

    CAS  Google Scholar 

  • Retuerto R, Fernandez Lema B, Rodriguez Roiloa S, Obeso JR (2000) Gender, light and water effects in carbon isotope discrimination, and growth rates in the dioecious tree Ilex aquifolium. Funct Ecol 14:529–537

    Article  Google Scholar 

  • Richards AJ (1986) Plant breeding systems. George Allen & Unwin, London

    Google Scholar 

  • Rozas V, DeSoto L, Olano JM (2009) Sex-specific, age dependent sensitivity of tree-ring growth to climate in the dioecious tree Juniperus thurifera. New Phytol 182:687–697

    Article  PubMed  Google Scholar 

  • Sales CRG, Marchiori PER, Machado RS, Fontenele AV, Machado EC, Silveira JAG, Ribeiro RV (2015) Photosynthetic and antioxidant responses to drought during the sugarcane ripening. Photosynthetica 53:1–9

    Article  Google Scholar 

  • Shi DW, Wei XD, Chen GX, Xu YL (2012) Changes in photosynthetic characteristics and antioxidative protection in male and female Ginkgo during natural senescence. J Am Soc Hortic Sci 137:349–360

    CAS  Google Scholar 

  • Sivakumar R (2014) Effect of drought on plant water status, gas exchange and yield parameters in contrasting genotypes of tomato (Solanum lycopersicum). Am Int J Res Formal Appl Nat Sci 8:57–62

    Google Scholar 

  • Souza RP, Machado EC, Silva JAB, Lagôa AMMA, Silveira JAG (2004) Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. Environ Exp Bot 51:45–56

    Article  CAS  Google Scholar 

  • Stehlik I, Friedman J, Barrett SCH (2008) Environmental influence on primary sex ratio in a dioecious plant. Proc Natl Acad 105:10847–10852

    Article  CAS  Google Scholar 

  • Su LY, Dai ZW, Li SH, **n HP (2015) A novel system for evaluating drought-cold tolerance of grapevines using chlorophyll fluorescence. BMC Plant Biol 15:82

    Article  PubMed  PubMed Central  Google Scholar 

  • Tomás M, Medrano H, Brugnoli E et al (2014) Variability of mesophyll conductance in grapevine cultivars under water stress conditions in relation to leaf anatomy and water use efficiency. Genotypic Var Mesophyll Conduct 20:272–280

    Google Scholar 

  • Veljovic-Jovanovic S, Noctor G, Foyer CH (2002) Are leaf hydrogen peroxide concentrations commonly overestimated? The potential influence of artefactual interference by tissue phenolics and ascorbate. Plant Physiol 40:501–507

    CAS  Google Scholar 

  • Wang WG, Li R, Liu B, Li L, Wang SH, Chen F (2011) Effect of low nitrogen and drought stresses on proline synthesis of Jatropha curcas seedling. Acta Physiologiae Plantarum 33:1591–1595

    Article  CAS  Google Scholar 

  • Weatherley PE (1950) Studies in the water relations of the cotton plant. I. The field measurement of water deficit in leaves. New Phytol 49:81–97

    Article  Google Scholar 

  • Wei XD, Chen GX, Shi DW, Liu D, Tang JH, Li X (2012) Effects of drought on fluorescence characteristics of photosystem II in leaves of Ginkgo biloba. Acta Ecologica Sinica 32:7492–7500

    Article  CAS  Google Scholar 

  • Wei XD, Shi DW, Chen GX (2013) Physiological, structural, and proteomic analysis of chloroplasts during natural senescence of Ginkgo leaves. Plant Growth Regul 69:191–201

    Article  CAS  Google Scholar 

  • **ao XW, Yang F, Zhang S, Korpelainen H, Li CY (2009) Physiological and proteomic responses of two contrasting Populus cathayana populations to drought stress. Physiol Plant 136:150–168

    Article  CAS  PubMed  Google Scholar 

  • Xu DQ, Zhang YZ (1992) Photoinhibition of photosynthesis in plants. Plant Physiol Commun 28:237–243

    CAS  Google Scholar 

  • Xu X, Yang F, Yin CY, Li CY (2007) Research advances in sex-specific responses of dioecious plants to environmental stress. Chin J Appl Ecol 28(11):2626–2631

    Google Scholar 

  • Xu X, Peng GQ, Wu CC, Korpelainen H, Li CY (2008) Drought inhibits photosynthetic capacity more in females than in males of Populus cathayana. Tree Physiol 28:1751–1759

    Article  PubMed  Google Scholar 

  • Yin CY, Peng YH, Zang RG, Zhu YP, Li CY (2005) Adaptive responses of Populus kangdingensis to drought stress. Physiol Plant 123:445–451

    Article  CAS  Google Scholar 

  • Zhang S, Lu S, Xu X, Korpelainen H, Li CY (2010) Changes in antioxidant enzyme activities and isozyme profiles in leaves of male and female Populus cathayana infected with Melampsora laricipopulina. Tree Physiol 30:116–128

    Article  PubMed  Google Scholar 

  • Zhang S, Jiang H, Peng S, Korpelainen H, Li CY (2011) Sex-related differences in morphological, physiological, and ultrastructural responses of Populus cathayana to chilling. J Exp Bot 62:675–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Chen LH, Duan BL, Korpelainen H, Li CY (2012) Populus cathayana males exhibit more efficient protective mechanisms than females under drought stress. For Ecol Manage 275:68–78

    Article  Google Scholar 

  • Zhang FJ, Zhang KK, Du CZ, Li J, **ng YX, Yang LT, Li RY (2015) Effect of drought stress on anatomical Structure and chloroplast ultrastructure in leaves of sugarcane. Sugar Tech 17:41–48

    Article  Google Scholar 

  • Zhao P, Sun GC, Zeng XP, Peng SL, Mo XM, Li YX (2000) A comparative study on chlorophyll content, chlorophyll fluorescence and diurnal course of leaf gas exchange of two ecotypes of banyan. Chin J Appl Ecol 11(3):327–332

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by National Natural Science Foundation (31300572); Innovation Project of Jiangsu Postgraduate Education (KYZZ-0248); The Priority Academic Program Development of Jiangsu High Education Institutions (PAPD); The Agricultural Science and Technology Innovation Fund of Jiangsu Province in China [cx(13)5002] and the Natural Science Foundation of Jiangsu Province (No. BK20130708).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinfeng **e.

Additional information

Communicated by L Bavaresco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, M., Shi, D., Wei, X. et al. Gender-related differences in adaptability to drought stress in the dioecious tree Ginkgo biloba . Acta Physiol Plant 38, 124 (2016). https://doi.org/10.1007/s11738-016-2148-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-016-2148-0

Keywords

Navigation