Log in

Phase transition regulation and caloric effect

  • Review Article
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

Solid state refrigeration based on caloric effect is regarded as a potential candidate for replacing vapor-compression refrigeration. Numerous methods have been proposed to optimize the refrigeration properties of caloric materials, of which single field tuning as a relatively simple way has been systemically studied. However, single field tuning with few tunable parameters usually obtains an excellent performance in one specific aspect at the cost of worsening the performance in other aspects, like attaining a large caloric effect with narrowing the transition temperature range and introducing hysteresis. Because of the shortcomings of the caloric effect driven by a single field, multifield tuning on multicaloric materials that have a coupling between different ferro-orders came into view. This review mainly focuses on recent studies that apply this method to improve the cooling performance of materials, consisting of enlarging caloric effects, reducing hysteresis losses, adjusting transition temperatures, and widening transition temperature spans, which indicate that further progress can be made in the application of this method. Furthermore, research on the sign of lattice and spin contributions to the magnetocaloric effect found new phonon evolution mechanisms, calling for more attention on multicaloric effects. Other progress including improving cyclability of FeRh alloys by introducing second phases and realizing a large reversible barocaloric effect by hybridizing carbon chains and inorganic groups is described in brief.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Gschneidner K A Jr, Pecharsky V K, Tsokol A O. Recent developments in magnetocaloric materials. Reports on Progress in Physics, 2005, 68(6): 1479–1539

    Article  Google Scholar 

  2. Franco V, Blazquez J S, Ipus J J, et al. Magnetocaloric effect: From materials research to refrigeration devices. Progress in Materials Science, 2018, 93: 112–232

    Article  Google Scholar 

  3. Shen B G, Sun J R, Hu F X, et al. Recent progress in exploring magnetocaloric materials. Advanced Materials, 2009, 21(45): 4545–4564

    Article  Google Scholar 

  4. Zheng X Q, Shen B G. The magnetic properties and magnetocaloric effects in binary R-T (R = Pr, Gd, Tb, Dy, Ho, Er, Tm; T = Ga, Ni, Co, Cu) intermetallic compounds. Chinese Physics B, 2017, 26(2): 027501

    Article  Google Scholar 

  5. Li L, Yan M. Recent progress in the development of RE2TMTM’ O6 double perovskite oxides for cryogenic magnetic refrigeration. Journal of Materials Science and Technology, 2023, 136: 1–12

    Article  Google Scholar 

  6. Zhang Y, Tian Y, Zhang Z, et al. Magnetic properties and giant cryogenic magnetocaloric effect in B-site ordered antiferromagnetic Gd2MgTiO6 double perovskite oxide. Acta Materialia, 2022, 226: 117669

    Article  Google Scholar 

  7. Zhang Y, Zhu J, Li S, et al. Magnetic properties and promising magnetocaloric performances in the antiferromagnetic GdFe2Si2 compound. Science China Materials, 2022, 65(5): 1345–1352

    Article  Google Scholar 

  8. Zhang Y K, Wu J H, He J, et al. Solutions to obstacles in the commercialization of room-temperature magnetic refrigeration. Renewable & Sustainable Energy Reviews, 2021, 143: 110933

    Article  Google Scholar 

  9. Li L W, Yan M. Recent progresses in exploring the rare earth based intermetallic compounds for cryogenic magnetic refrigeration. Journal of Alloys and Compounds, 2020, 823: 153810

    Article  Google Scholar 

  10. Gao F, Sheng J, Ren W, et al. Incommensurate spin density wave and magnetocaloric effect in the metallic triangular lattice HoAl2Ge2. Physical Review. B, 2022, 106(13): 134426

    Article  Google Scholar 

  11. Neese B, Chu B, Lu S G, et al. Large electrocaloric effect in ferroelectric polymers near room temperature. Science, 2008, 321(5890): 821–823

    Article  Google Scholar 

  12. Qian X S, Han D L, Zheng L R, et al. High-entropy polymer produces a giant electrocaloric effect at low fields. Nature, 2021, 600(7890): 664–669

    Article  Google Scholar 

  13. Ma R, Zhang Z, Tong K, et al. Highly efficient electrocaloric cooling with electrostatic actuation. Science, 2017, 357(6356): 1130–1134

    Article  Google Scholar 

  14. Greco A, Masselli C. Electrocaloric cooling: A review of the thermodynamic cycles, materials, models, and devices. Magnetochemistry (Basel, Switzerland), 2020, 6(4): 67

    Google Scholar 

  15. Chen Y Q, Qian J F, Yu J Y, et al. An all-scale hierarchical architecture induces colossal room-temperature electrocaloric effect at ultralow electric field in polymer nanocomposites. Advanced Materials, 2020, 32(30): 1907927

    Article  Google Scholar 

  16. Niu X, Jian X D, Gong W P, et al. Field-driven merging of polarizations and enhanced electrocaloric effect in BaTiO3-based lead-free ceramics. Journal of Advanced Ceramics, 2022, 11(11): 1777–1788

    Article  Google Scholar 

  17. Zou K L, Shao C C, Bai P J, et al. Giant room-temperature electrocaloric effect of polymer-ceramic composites with orientated BaSrTiO3 nanofibers. Nano Letters, 2022, 22(16): 6560–6566

    Article  Google Scholar 

  18. Tušek J, Engelbrecht K, Eriksen D, et al. A regenerative elastocaloric heat pump. Nature Energy, 2016, 1(10): 16134

    Article  Google Scholar 

  19. Zhao Z, Guo W, Zhang Z. Room-temperature colossal elastocaloric effects in three-dimensional graphene architectures: an atomistic study. Advanced Functional Materials, 2022, 32(42): 2203866

    Article  Google Scholar 

  20. Dang P, Ye F, Zhou Y, et al. Low-fatigue and large room-temperature elastocaloric effect in a bulk Ti49.2Ni40.8Cu10 alloy. Acta Materialia, 2022, 229: 117802

    Article  Google Scholar 

  21. Li D, Li Z, Zhang X, et al. Giant elastocaloric effect in Ni-Mn-Ga-based alloys boosted by a large lattice volume change upon the Martensitic transformation. ACS Applied Materials & Interfaces, 2022, 14(1): 1505–1518

    Article  Google Scholar 

  22. Mañosa L, Planes A. Materials with giant mechanocaloric effects: Cooling by strength. Advanced Materials, 2017, 29(11): 1603607

    Article  Google Scholar 

  23. Moya X, Mathur N D. Caloric materials for cooling and heating. Science, 2020, 370(6518): 797–803

    Article  Google Scholar 

  24. Li B, Kawakita Y, Ohira-Kawamura S, et al. Colossal barocaloric effects in plastic crystals. Nature, 2019, 567(7749): 506–510

    Article  Google Scholar 

  25. Li F B, Li M, Xu X, et al. Understanding colossal barocaloric effects in plastic crystals. Nature Communications, 2020, 11(1): 4190

    Article  Google Scholar 

  26. Lin J, Tong P, Zhang X, et al. Giant room-temperature barocaloric effect at the electronic phase transition in Ni1−xFexS. Materials Horizons, 2020, 7(10): 2690–2695

    Article  Google Scholar 

  27. Zhang K, Song R, Qi J, et al. Colossal barocaloric effect in carboranes as a performance tradeoff. Advanced Functional Materials, 2022, 32(20): 2112622

    Article  Google Scholar 

  28. Ren Q, Qi J, Yu D, et al. Ultrasensitive barocaloric material for room-temperature solid-state refrigeration. Nature Communications, 2022, 13(1): 2293

    Article  Google Scholar 

  29. Romanini M, Wang Y, Gurpinar K, et al. Giant and reversible barocaloric effect in trinuclear spin-crossover complex Fe3(bntrz)6(tcnset)6. Advanced Materials, 2021, 33(10): 2008076

    Article  Google Scholar 

  30. Aznar A, Negrier P, Planes A, et al. Reversible colossal barocaloric effects near room temperature in 1-X-adamantane (X = Cl, Br) plastic crystals. Applied Materials Today, 2021, 23: 101023

    Article  Google Scholar 

  31. Imamura W, Usuda E O, Paixao L S, et al. Supergiant barocaloric effects in acetoxy silicone rubber over a wide temperature range: Great potential for solid-state cooling. Chinese Journal of Polymer Science, 2020, 38(9): 999–1005

    Article  Google Scholar 

  32. Aznar A, Lloveras P, Barrio M, et al. Reversible and irreversible colossal barocaloric effects in plastic crystals. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(2): 639–647

    Article  Google Scholar 

  33. Gao Y, Liu H, Hu F, et al. Reversible colossal barocaloric effect dominated by disordering of organic chains in (CH3-(CH2)n−1-NH3)2MnCl4 single crystals. NPG Asia Materials, 2022, 14(1): 34

    Article  Google Scholar 

  34. Pecharsky V K, Gschneidner K A Jr. Giant magnetocaloric effect in Gd5(Si2Ge2). Physical Review Letters, 1997, 78(23): 4494–4497

    Article  Google Scholar 

  35. Pecharsky V K, Gschneidner K A Jr. Effect of alloying on the giant magnetocaloric effect of Gd5(Si2Ge2). Journal of Magnetism and Magnetic Materials, 1997, 167(3): L179–L184

    Article  Google Scholar 

  36. Nikitin S A, Myalikgulyev G, Tishin A M, et al. The magnetocaloric effect in FE49RH51 compound. Physics Letters. [Part A], 1990, 148(6–7): 363–366

    Article  Google Scholar 

  37. Annaorazov M P, Nikitin S A, Tyurin A L, et al. Anomalously high entropy change in FeRh alloy. Journal of Applied Physics, 1996, 79(3): 1689–1695

    Article  Google Scholar 

  38. Hu F X, Shen B G, Sun J R, et al. Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6. Applied Physics Letters, 2001, 78(23): 3675–3677

    Article  Google Scholar 

  39. de Oliveira N A. Giant magnetocaloric and barocaloric effects in R5Si2Ge2 (R = Tb, Gd). Journal of Applied Physics, 2013, 113(3): 033910

    Article  Google Scholar 

  40. Hu F X, Shen B G, Sun J R, et al. Great magnetic entropy change in La(Fe, M)13 (M = Si, Al) with Co do**. Chinese Physics (Bei**g), 2000, 9(7): 550–553

    Article  Google Scholar 

  41. Fujita A, Fujieda S, Hasegawa Y, et al. Itinerant-electron metamagnetic transition and large magnetocaloric effects in La(FexSi1−x)13 compounds and their hydrides. Physical Review B: Condensed Matter, 2003, 67(10): 104416

    Article  Google Scholar 

  42. Wada H, Tanabe Y. Giant magnetocaloric effect of MnAs1−xSbx. Applied Physics Letters, 2001, 79(20): 3302–3304

    Article  Google Scholar 

  43. Ul Hassan N, Shah I A, Khan T, et al. Magnetostructural transformation and magnetocaloric effect in Mn48−xVxNi42Sn10 ferromagnetic shape memory alloys. Chinese Physics B, 2018, 27(3): 037504

    Article  Google Scholar 

  44. Yang H, Liu J, Li C, et al. Ferromagnetism and magnetostructural coupling in V-doped MnNiGe alloys. Chinese Physics B, 2018, 27(10): 107502

    Article  Google Scholar 

  45. Bao L F, Huang W D, Ren Y J. Tuning martensitic phase transition by non-magnetic atom vacancy in MnCoGe alloys and related giant magnetocaloric effect. Chinese Physics Letters, 2016, 33(7): 077502

    Article  Google Scholar 

  46. Zhang H, **ng C F, Long K W, et al. Linear dependence of magnetocaloric effect on magnetic field in Mn0.6Fe0.4NiSi0.5Ge0.5 and Ni50Mn34Co2Sn14 with first-order magnetostructural transformation. Acta Physics Sinica, 2018, 67(20): 207501 (in Chinese)

    Article  Google Scholar 

  47. Zhang B, Zheng X Q, Zhao T Y, et al. Machine learning technique for prediction of magnetocaloric effect in La(Fe, Si/Al)13-based materials. Chinese Physics B, 2018, 27(6): 067503

    Article  Google Scholar 

  48. Castillo-Villa P O, Soto-Parra D E, Matutes-Aquino J A, et al. Caloric effects induced by magnetic and mechanical fields in a Ni50Mn25−xGa25Cox magnetic shape memory alloy. Physical Review B: Condensed Matter and Materials Physics, 2011, 83(17): 174109

    Article  Google Scholar 

  49. Hao J Z, Hu F X, Yu Z B, et al. Multicaloric and coupled-caloric effects. Chinese Physics B, 2020, 29(4): 047504

    Article  Google Scholar 

  50. Pecharsky V K, Gschneidner K A Jr. Phase relationships and crystallography in the pseudobinary system Gd5Si4-Gd5Ge4. Journal of Alloys and Compounds, 1997, 260(1–2): 98–106

    Article  Google Scholar 

  51. Hu F X, Gao J, Qian X L, et al. Magnetocaloric effect in itinerant electron metamagnetic systems La(Fe1−xCox)11.9Si1.1. Journal of Applied Physics, 2005, 97(10): 10M303

    Article  Google Scholar 

  52. Wada H, Matsuo S, Mitsuda A. Pressure dependence of magnetic entropy change and magnetic transition in MnAs1−xSbx. Physical Review B: Condensed Matter and Materials Physics, 2009, 79(9): 092407

    Article  Google Scholar 

  53. Liu E, Wang W, Feng L, et al. Stable magnetostructural coupling with tunable magnetoresponsive effects in hexagonal ferromagnets. Nature Communications, 2012, 3(1): 873

    Article  Google Scholar 

  54. Zhao Y Y, Hu F X, Bao L F, et al. Giant negative thermal expansion in bonded MnCoGe-based compounds with Ni2In-type hexagonal structure. Journal of the American Chemical Society, 2015, 137(5): 1746–1749

    Article  Google Scholar 

  55. Johnson V. Diffusionless orthorhombic to hexagonal transitions in ternary silicides and germanides. Inorganic Chemistry, 1975, 14(5): 1117–1120

    Article  Google Scholar 

  56. Anzai S, Ozawa K. Coupled nature of magnetic and structural transition in MnNiGe under pressure. Physical Review B: Condensed Matter, 1978, 18(5): 2173–2178

    Article  Google Scholar 

  57. Łażewski J, Piekarz P, Tobola J, et al. Phonon mechanism of the magnetostructural phase transition in MnAs. Physical Review Letters, 2010, 104(14): 147205

    Article  Google Scholar 

  58. Jia L, Liu G J, Sun J R, et al. Entropy changes associated with the first-order magnetic transition in LaFe13−xSix. Journal of Applied Physics, 2006, 100(12): 123904

    Article  Google Scholar 

  59. Gruner M E, Keune W, Roldan Cuenya B, et al. Element-resolved thermodynamics of magnetocaloric LaFe13−xSix. Physical Review Letters, 2015, 114(5): 057202

    Article  Google Scholar 

  60. Landers J, Salamon S, Keune W, et al. Determining the vibrational entropy change in the giant magnetocaloric material LaFe11.6Si1.4 by nuclear resonant inelastic X-ray scattering. Physical Review. B, 2018, 98(2): 024417

    Article  Google Scholar 

  61. Bao L F, Hu F X, Wu R R, et al. Evolution of magnetostructural transition and magnetocaloric effect with Al do** in MnCoGe1−xAlx compounds. Journal of Physics. D, Applied Physics, 2014, 47(5): 055003

    Article  Google Scholar 

  62. Li B, Ren W J, Zhang Q, et al. Magnetostructural coupling and magnetocaloric effect in Ni-Mn-In. Applied Physics Letters, 2009, 95(17): 172506

    Article  Google Scholar 

  63. von Ranke P J, de Oliveira N A, Mello C, et al. Analytical model to understand the colossal magnetocaloric effect. Physical Review B: Condensed Matter and Materials Physics, 2005, 71(5): 054410

    Article  Google Scholar 

  64. Hao J, Hu F, Wang J T, et al. Large enhancement of magnetocaloric and barocaloric effects by hydrostatic pressure in La(Fe0.92Co0.08)11.9Si1.1 with a NaZn13-type structure. Chemistry of Materials, 2020, 32(5): 1807–1818

    Article  Google Scholar 

  65. Hao J Z, Hu F X, Yu Z B, et al. The sign of lattice and spin entropy change in the giant magnetocaloric materials with negative lattice expansions. Journal of Magnetism and Magnetic Materials, 2020, 512: 166983

    Article  Google Scholar 

  66. Gschneidner K A Jr, Mudryk Y, Pecharsky V K. On the nature of the magnetocaloric effect of the first-order magnetostructural transition. Scripta Materialia, 2012, 67(6): 572–577

    Article  Google Scholar 

  67. Pecharsky V K, Gschneidner K A Jr. Tunable magnetic regenerator alloys with a giant magnetocaloric effect for magnetic refrigeration from ∼20 to ∼290 K. Applied Physics Letters, 1997, 70(24): 3299–3301

    Article  Google Scholar 

  68. Pecharsky V K, Pecharsky A O, Gschneidner K A Jr. Uncovering the structure-property relationships in R5(SixGe4−x) intermetallic phases. Journal of Alloys and Compounds, 2002, 344(1–2): 362–368

    Article  Google Scholar 

  69. Hao J Z, Hu F X, Zhou H B, et al. Large enhancement of magnetocaloric effect driven by hydrostatic pressure in HoCuSi compound. Scripta Materialia, 2020, 186: 84–88

    Article  Google Scholar 

  70. Oleś A, Duraj R, Kolenda M, et al. Magnetic properties of DyCuSi and HoCuSi studied by neutron diffraction and magnetic measurements. Journal of Alloys and Compounds, 2004, 363(1–2): 63–67

    Article  Google Scholar 

  71. Gong Y Y, Wang D H, Cao Q Q, et al. Electric field control of the magnetocaloric effect. Advanced Materials, 2015, 27(5): 801–805

    Article  Google Scholar 

  72. Liu J, Gottschall T, Skokov K P, et al. Giant magnetocaloric effect driven by structural transitions. Nature Materials, 2012, 11(7): 620–626

    Article  Google Scholar 

  73. Qiao K, Hu F, Liu Y, et al. Novel reduction of hysteresis loss controlled by strain memory effect in FeRh/PMN-PT heterostructures. Nano Energy, 2019, 59: 285–294

    Article  Google Scholar 

  74. Zhang H, Armstrong A, Müllner P. Effects of surface modifications on the fatigue life of unconstrained Ni-Mn-Ga single crystals in a rotating magnetic field. Acta Materialia, 2018, 155: 175–186

    Article  Google Scholar 

  75. Mañosa L, Gonzalez-Alonso D, Planes A, et al. Giant solid-state barocaloric effect in the Ni-Mn-In magnetic shape-memory alloy. Nature Materials, 2010, 9(6): 478–481

    Article  Google Scholar 

  76. Pecharsky A O, Gschneidner K A Jr, Pecharsky V K. The giant magnetocaloric effect between 190 and 300 K in the Gd5SixGe4−x alloys for 1.4 ⩽ x ⩽ 2.2. Journal of Magnetism and Magnetic Materials, 2003, 267(1): 60–68

    Article  Google Scholar 

  77. Stern-Taulats E, Planes A, Lloveras P, et al. Barocaloric and magnetocaloric effects in Fe49Rh51. Physical Review B: Condensed Matter and Materials Physics, 2014, 89(21): 214105

    Article  Google Scholar 

  78. Nikitin S A, Myalikgulyev G, Annaorazov M P, et al. Giant elastocaloric effect in FeRh alloy. Physics Letters. [Part A], 1992, 171(3–4): 234–236

    Article  Google Scholar 

  79. Biswas A, Chandra S, Phan M H, et al. Magnetocaloric properties of nanocrystalline LaMnO3: Enhancement of refrigerant capacity and relative cooling power. Journal of Alloys and Compounds, 2012, 545: 157–161

    Article  Google Scholar 

  80. Qiao K, Wang J, Hu F, et al. Regulation of phase transition and magnetocaloric effect by ferroelectric domains in FeRh/PMN-PT heterojunctions. Acta Materialia, 2020, 191: 51–59

    Article  Google Scholar 

  81. Provenzano V, Shapiro A J, Shull R D. Reduction of hysteresis losses in the magnetic refrigerant Gd5Ge2Si2 by the addition of iron. Nature, 2004, 429(6994): 853–857

    Article  Google Scholar 

  82. Lyubina J, Schäfer R, Martin N, et al. Novel design of La(Fe, Si)13 alloys towards high magnetic refrigeration performance. Advanced Materials, 2010, 22(33): 3735–3739

    Article  Google Scholar 

  83. Stern-Taulats E, Castan T, Planes A, et al. Giant multicaloric response of bulk Fe49Rh51. Physical Review. B, 2017, 95(10): 104424

    Article  Google Scholar 

  84. Kübler J, William A R, Sommers C B. Formation and coupling of magnetic moments in Heusler alloys. Physical Review B: Condensed Matter, 1983, 28(4): 1745–1755

    Article  Google Scholar 

  85. Sharma V K, Chattopadhyay M K, Roy S B. The effect of external pressure on the magnetocaloric effect of Ni-Mn-In alloy. Journal of Physics Condensed Matter, 2011, 23(36): 366001

    Article  Google Scholar 

  86. Liang F X, Hao J Z, Shen F R, et al. Experimental study on coupled caloric effect driven by dual fields in metamagnetic Heusler alloy Ni50Mn35In15. APL Materials, 2019, 7(5): 051102

    Article  Google Scholar 

  87. Qiao K, Wang J, Zuo S, et al. Enhanced performance of ΔTad upon frequent alternating magnetic fields in FeRh alloys by introducing second phases. ACS Applied Materials & Interfaces, 2022, 14(16): 18293–18301

    Article  Google Scholar 

  88. Aliev A M, Batdalov A B, Khanov L N, et al. Reversible magnetocaloric effect in materials with first order phase transitions in cyclic magnetic fields: Fe48Rh52 and Sm0.6Sr0.4MnO3. Applied Physics Letters, 2016, 109(20): 202407

    Article  Google Scholar 

  89. Zverev V I, Saletsky A M, Gimaev R R, et al. Influence of structural defects on the magnetocaloric effect in the vicinity of the first order magnetic transition in Fe50.4Rh49.6. Applied Physics Letters, 2016, 108(19): 192405

    Article  Google Scholar 

  90. Khaykovich B, Zeldov E, Majer D, et al. Vortex-lattice phase transitions in Bi2Sr2CaCu2O8 crystals with different oxygen stoichiometry. Physical Review Letters, 1996, 76(14): 2555–2558

    Article  Google Scholar 

  91. Chang K, Feng W, Chen L Q. Effect of second-phase particle morphology on grain growth kinetics. Acta Materialia, 2009, 57(17): 5229–5236

    Article  Google Scholar 

  92. Tang X, Li J, Sepehri-Amin H, et al. Improved coercivity and squareness in bulk hot-deformed Nd-Fe-B magnets by two-step eutectic grain boundary diffusion process. Acta Materialia, 2021, 203: 116479

    Article  Google Scholar 

  93. Aliev A M, Batdalov A B, Khanov L N, et al. Magnetocaloric effect in some magnetic materials in alternating magnetic fields up to 22 Hz. Journal of Alloys and Compounds, 2016, 676: 601–605

    Article  Google Scholar 

  94. Seo J, McGillicuddy R D, Slavney A H, et al. Colossal barocaloric effects with ultralow hysteresis in two-dimensional metal-halide perovskites. Nature Communications, 2022, 13(1): 2536

    Article  Google Scholar 

  95. Li J, Barrio M, Dunstan D J, et al. Colossal reversible barocaloric effects in layered hybrid perovskite (C10H21NH3)2MnCl4 under low pressure near room temperature. Advanced Functional Materials, 2021, 31(46): 2105154

    Article  Google Scholar 

  96. Aznar A, Lloveras P, Romanini M, et al. Giant barocaloric effects over a wide temperature range in superionic conductor AgI. Nature Communications, 2017, 8(1): 1851

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key R&D Program of China (Grant Nos. 2020YFA0711502, 2021YFB3501202, 2019YFA0704900, 2018YFA0305704, and 2022YFB3505201), the National Natural Sciences Foundation of China (Grant Nos. 52088101, U1832219, 51971240, and 52101228), and the Strategic Priority Research Program B (Grant No. XDB33030200) and the Key Research Program (Grant Nos. ZDRW-CN-2021-3, 112111KYSB20180013) of the Chinese Academy of Sciences (CAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengxia Hu.

Ethics declarations

Competing interests The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Hao, J., Qiao, K. et al. Phase transition regulation and caloric effect. Front. Energy 17, 463–477 (2023). https://doi.org/10.1007/s11708-023-0860-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-023-0860-1

Keywords

Navigation