Log in

Quantitative analysis of planation surfaces of the upper Yangtze River in the Sichuan-Yunnan Region, Southwest China

  • Research Article
  • Published:
Frontiers of Earth Science Aims and scope Submit manuscript

Abstract

Identification of the planation surfaces (PSs) is key for utilizing them as a reference in studying the long-term geomorphological evolution of the Upper Yangtze River Basin in the Sichuan-Yunnan region, Southwest China. Using a combined method of DEM-based fuzzy logic and topographic and river profiles analysis and based on a comprehensive analysis of four morphometric parameters: slope, curvature, terrain ruggedness index, and relative height, we established the relevant fuzzy membership functions, and then calculated the membership degree (MD) of the study area. Results show that patches with a MD >80% and an area >0.4 km2 correspond well to the results of Google Earth and field investigation, representing the PS remnants. They consist of 1764 patches with an altitude, area, mean slope, and relief of mostly 2000–2500 m above sea level (asl), 0–10 km2, 4°–9°, 0–500 m, respectively, covering 9.2% of the study area’s landscape, dip** to southeast, decreasing progressively from northwest to southeast in altitude, and with no clear relation between each patch’s altitude and slope, or relief. All these results indicate that they are remnants of once regionally continuous PSs which were deformed by both the lower crust flow and the faults in upper crust, and dissected by the network of Upper Yangtze River. Additionally, topographic and river profiles analysis show that three PSs (PS1–PS3) well developed along the main valleys in the Yongren-Huili region, indicating several phases of uplift then planation during the Late Cenozoic era. Based on the incision amount deduced from projection of relict river profiles on PSs, together with erosion rates, breakup times of the PS1, PS2, and PS3 were estimated to be 3.47 Ma, 2.19 Ma, and 1.45 Ma, respectively, indicating appearance of modern Upper Yangtze River valley started between the Pliocene to early Pleistocene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams G F (1975). Planation surfaces: peneplains, pediplains, and etchplains. Benchmark Paper in Geology 22. Stroudsburg PA: Dowden, Hutchington and Ross, 476

    Google Scholar 

  • Ahnert F (1998). Introduction to Geomorphology. London: Amold Bascom F (1921). Cycles of erosion in the Piedmont province of Pennsylvania. J Geol, 29(6): 540–559

    Google Scholar 

  • Bessin P, Guillocheau F, Robin C, Schroëtter J M, Bauer H (2015). Planation surfaces of the Armorican Massif (western France): denudation chronology of a Mesozoic land surface twice exhumed in response to relative crustal movements between Iberia and Eurasia. Geomorphology, 233: 75–91

    Article  Google Scholar 

  • Bishop P (2007). Long-term landscape evolution: linking tectonics and surface processes. Earth Surf Process Landf, 32(3): 329–365

    Article  Google Scholar 

  • Bonow J M (2004). Palaeosurfaces and palaeovalleys on North Atlantic previously glaciated passive margins: reference forms for conclusions on uplift and erosion. Institutionen för naturgeografi och kvartärgeologi

    Google Scholar 

  • Bonow J M, Japsen P, Lidmar-Bergström K, Chalmers J A, Pedersen A K (2006a). Cenozoic uplift of Nuussuaq and Disko, West Greenland—Elevated erosion surfaces as uplift markers of a passive margin. Geomorphology, 80(3–4): 325–337

    Article  Google Scholar 

  • Bonow J M, Japsen P, Nielsen T F (2014). High-level landscapes along the margin of southern East Greenland—A record of tectonic uplift and incision after breakup in the NEAtlantic. Global Planet Change, 116(2): 10–29

    Article  Google Scholar 

  • Bonow J M, Lidmar-Bergström K, Japsen P (2006b). Palaeosurfaces in central West Greenland as reference for identification of tectonic movements and estimation of erosion. Global Planet Change, 50(3–4): 161–183

    Article  Google Scholar 

  • Bosch G V, Van Den Driessche J, Babault J, Robert A, Carballo A, Le Carlier C, Loget N, Prognon C, Wyns R, Baudin T (2016). Peneplanation and lithosphere dynamics in the Pyrenees. C R Geosci, 348: 194–202

    Article  Google Scholar 

  • Burrough P A, McDonell R A (1998). Principles of geographical information systems. New York: Oxford University Press, 190

    Google Scholar 

  • Calvet M, Gunnell Y, Farines B (2015). Flat-topped mountain ranges: their global distribution and value for understanding the evolution of mountain topography. Geomorphology, 241: 255–291

    Article  Google Scholar 

  • Chen F B (1992). Hengduan event: an important tectonic event of the Late Cenozoic in Eastern Asian. Mountain Research, 10(1): 195–202

    Google Scholar 

  • Clark M K, House M A, Royden L H, Whipple K X, Burchfiel B C, Zhang X, Tang W (2005). Late Cenozoic uplift of southeastern Tibet. Geology, 33(6): 525–528

    Article  Google Scholar 

  • Clark M K, Royden L H (2000). Topographic ooze: building the eastern margin of Tibet by lower crustal flow. Geology, 28(8): 703–706

    Article  Google Scholar 

  • Clark M K, Royden L H, Whipple K X, Burchfiel B C, Zhang X, Tang W (2006). Use of a regional, relict landscape to measure vertical deformation of the eastern Tibetan Plateau. J Geophys Res, 111(F3): F03002

    Article  Google Scholar 

  • Clark M K, Schoenbohm L M, Royden L H, Whipple K X, Burchfiel B C, Zhang X, Tang W, Wang E, Chen L (2004). Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns. Tectonics, 23(1): TC1006

    Article  Google Scholar 

  • Clift P D, Sun Z (2006). The sedimentary and tectonic evolution of the Yinggehai–Song Hong basin and the southern Hainan margin, South China Sea: implications for Tibetan uplift and monsoon intensification. J Geophys Res, 111(B6): B06405

    Article  Google Scholar 

  • Coltorti M, Firuzabadi D, Borri A, Fantozzi P, Pieruccini P (2015). Planation surfaces and the long-term geomorphological evolution of Ethiopia. In: Billi P, eds. Landscapes and Landforms of Ethiopia. Springer Netherlands, 51(6): 117–136

    Article  Google Scholar 

  • Cui Z J, Li D W, Feng J L, Liu G N, Li H J (2001a). Covered karst, weathering crust and karst planation surface. Sci China Earth Sci, 31 (6): 510–520

    Google Scholar 

  • Cui Z J, Li D W, Liu G N, Feng J L, Zhang W (2001b). The properties of the lateritic karst weathering crust and the formation environment of planation surfaces in Tibet, Yunnan, Guizhou, and Hunan province. Sci China Earth Sci, 31: 134–141

    Google Scholar 

  • Davis W M (1889a). The rivers and valleys of Pennsylvania. National Geographic Society, 1: 183–253

    Google Scholar 

  • Davis W M (1889b). Topographic development of the Triassic formation of the Connecticut Valley. American Journal of Science, 3rd Ser., 37: 423–434

    Article  Google Scholar 

  • Davis W M (1899). The geographical cycle. Geogr J, 14(5): 481–504

    Article  Google Scholar 

  • Feng J L, Cui Z J, Zhang W, Li D W, Liu G N, Zhu L P (2004). Genesis of the layered landform surfaces in Dongchuan, Yunan Province. JMt Sci, 22(2): 165–174

    Google Scholar 

  • Flint J J (1974). Stream gradient as a function of order, magnitude, and discharge. Water Resour Res, 10(5): 969–973

    Article  Google Scholar 

  • Foster M A, Kelsey H M (2012). Knickpoint and knickzone formation and propagation, South Fork Eel River, northern California. Geosphere, 8(2): 403–416

    Article  Google Scholar 

  • Guillocheau F, Simon B, Baby G, Bessin P, Robin C, Dauteuil O (2018). Planation surfaces as a record of mantle dynamics: the case example of Africa. Gondwana Res, 53(1): 82–98

    Article  Google Scholar 

  • Hack J T (1973). Stream-profile analysis and stream-gradient index. J Res USGeol Surv, 1(4): 421–429

    Google Scholar 

  • Haider V L, Dunkl I, Eynatten H V, Ding L, Frei D, Zhang L Y (2013). Cretaceous to Cenozoic evolution of the northern Lhasa Terrane and the Early Paleogene development of peneplains at Nam Co, Tibetan Plateau. J Asian Earth Sci, 70–71(1): 79–98

    Article  Google Scholar 

  • Haider V L, Kropácek J, Dunkl I, Wagner B, von Eynatten H (2015). Identification of peneplains by multi-parameter assessment of digital elevation models. Earth Surf Process Landf, 40(11): 1477–1492

    Article  Google Scholar 

  • Harkins N, Kirby E, Heimsath A, Robinson R, Reiser U (2007). Transient fluvial incision in the headwaters of the Yellow River, northeastern Tibet, China. J Geophys Res Earth Surf, 112(F3), https://doi.org/10.1029/2006JF000570

    Google Scholar 

  • He Z, Zhang X, Bao S, Qian Y S, Sheng Y Y, Liu X T, He X L, Yang X C, Zhao J X, Liu R, Lu C Y (2015). Multiple climatic cycles imprinted on regional uplift-controlled fluvial terraces in the lower Yalong River and Anning River, SETibetan Plateau. Geomorphology, 250: 95–112

    Article  Google Scholar 

  • Hetzel R, Dunkl I, Haider V, Strobl M, Von Eynatten H, Ding L, Frei D (2011). Peneplain formation in southern Tibet predates the India-Asia collision and plateau uplift. Geology, 39(10): 983–986

    Article  Google Scholar 

  • Huang M H (1992). Research on the stratified landform in the Southwest of China. Journal of Suzhou Railway Teachers College, 9(4): 57–63 (in Chinese)

    Google Scholar 

  • Huggett R J (2016). Fundamentals of Geomorphology. London: Routledge, 436

    Book  Google Scholar 

  • Japsen P, Bonow J M, Green P F, Chalmers J A, Lidmar-Bergström K (2009). Formation, uplift and dissection of planation surfaces at passive continental margins—A new approach. Earth Surf Process Landf, 34(5): 683–699

    Article  Google Scholar 

  • Jarvis A, Reuter H I, Nelson A, Guevara E (2008). Hole-filled SRTM for the globe Version 4. CGIAR-CSI SRTM 90m Database. Available online: https://doi.org/srtm.csi.cgiar.org

    Google Scholar 

  • Johansson M (1999). Analysis of digital elevation data for palaeosurfaces in south-western Sweden. Geomorphology, 26(4): 279–295

    Article  Google Scholar 

  • Jolivet M, Ritz J F, Vassallo R, Larroque C, Braucher R, Todbileg M, Chauvet A, Sue C, Arnaud N, de Vicente RArzhanikova A, Arzhanikov S (2007). Mongolian summits: an uplifted, flat, old but still preserved erosion surface. Geology, 35(10): 871–874

    Article  Google Scholar 

  • Kennan L, Lamb S, Hoke L (1997). High-altitude palaeosurfaces in the Bolivian Andes: evidence for late Cenozoic surface uplift. Geol Soc Lond Spec Publ, 120(1): 307–323

    Article  Google Scholar 

  • King L C (1962). Morphology of the Earth. Edinburgh: Oliver and Boyd

    Google Scholar 

  • Kirby E, Regalla C, Ouimet W B, Bierman P R (2010). Reconstructing temporal variation in fault slip from footwall topography: an example from Saline valley, California, 2010 Fall Meeting, American Geophysical Union, San Francisco, CA

    Google Scholar 

  • Kirby E, Whipple K X (2012). Expression of active tectonics in erosional landscapes. J Struct Geol, 44: 54–75

    Article  Google Scholar 

  • Kühni A, Pfiffner O A (2001). The relief of the Swiss Alps and adjacent areas and its relation to lithology and structure: topographic analysis from a 250-m DEM. Geomorphology, 41(4): 285–307

    Article  Google Scholar 

  • Legrain N, Stüwe K, Wölfler A (2014). Incised relict landscapes in the Eastern Alps. Geomorphology, 221: 124–138

    Article  Google Scholar 

  • Lei C, Ren J Y, Sternai P, Fox M, Willett S, **e X N, Clift P D, Liao J H, Wang Z F (2015). Structure and sediment budget of Yinggehai–Song Hong basin, South China Sea: implications for Cenozoic tectonics and river basin reorganization in Southeast Asia. Tectonophysics, 655: 177–190

    Article  Google Scholar 

  • Li C, Jiang X, Gong W, Li D, Li C (2018). Surface uplift of the Central Yunnan Plateau since the Pliocene. Geol J, 53: 386–396

    Article  Google Scholar 

  • Li H, Huang X Y, Deng Q L, Kusky T M, Cai X B (2012). Map** of planation surfaces in the southwest region of Hubei Province, China—Using the DEM-derived painted relief model. J Earth Sci, 23(5): 719–730

    Article  Google Scholar 

  • Li J J (1999). In memory of Davisian theory of erosion cycle and peneplain: a centurial study in China. Journal of Lanzhou University (Natural Sciences), 35(3): 157–163

    Google Scholar 

  • Li J J, Shi Y F, Li B Y (1995). Uplift of the Qinghai-**zang (Tibet) Plateau and global change. Lanzhou University Press, 1451–1452

    Google Scholar 

  • Li J J, **e S Y, Kuang M S (2001). Geomorphic evolution of the Yangtze Gorges and the time of their formation. Geomorphology, 41(2–3): 125–135

    Article  Google Scholar 

  • Lidmar-Bergström K, Bonow J M, Japsen P (2013). Stratigraphic landscape analysis and geomorphological paradigms: Scandinavia as an example of Phanerozoic uplift and subsidence. Global Planet Change, 100: 153–171

    Article  Google Scholar 

  • Liu-Zeng J, Tapponnier P, Gaudemer Y, Ding L (2008). Quantifying landscape differences across the Tibetan plateau: implications for topographic relief evolution. J Geophys Res Earth Surf, 113 (F04018): 1–26

    Google Scholar 

  • Ma Z H, Li X M, Guo B H, Yu H, Ye X Y, Song C H, Li J J (2016). Extraction and analysis of Maxianshan planation surfaces in northeastern margin of the Tibetan Plateau. Acta Geogr Sin, 71(3): 400–411

    Google Scholar 

  • Miller S R, Sak P B, Kirby E, Bierman P R (2013). Neogene rejuvenation of central Appalachian topography: evidence for differential rock uplift from stream profiles and erosion rates. Earth Planet Sci Lett, 369–370: 1–12

    Article  Google Scholar 

  • Monkhouse F J, Wilkinson H R (1952). Population Maps and Diagrams. Maps and Diagrams, Methuen, London

    Google Scholar 

  • Niemann J D, Gasparini N M, Tucker G E, Bras R L (2001). A quantitative evaluation of Playfair’s law and its use in testing longterm stream erosion models. Earth Surf Process Landf, 26(12): 1317–1332

    Article  Google Scholar 

  • Olaya V (2009). Basic land-surface parameters. In: Hengl T, Reuter H I,eds. Developments in Soil Science, 33: 141–169

    Article  Google Scholar 

  • Pan B T, Hu Z B, Wang J P, Vandenberghe J, Hu X F, Wen Y H, Li Q, Cao B (2012). The approximate age of the planation surface and the incision of the Yellow River. Palaeogeography, Palaeoclimatology, Palaeoecology, 356: 54–61

    Article  Google Scholar 

  • Peckham S D, Hengl T, Evans J, Wilson J P, Gould M (2011). Profile, plan and streamline curvature: a simple derivation and applications. In: Proceedings of the International Society for Geomorphometry, Redlands, CA.27–30

    Google Scholar 

  • Pike R J (2000). Geomorphometry: diversity in quantitative surface analysis. Prog Phys Geogr, 24(1): 1–20

    Google Scholar 

  • Qian Y, **ong L, Li J, Tang G (2016). Landform planation index extracted from DEMs: a case study in Ordos Platform of China. Chin Geogr Sci, 26(3): 314–324

    Article  Google Scholar 

  • Reuter H I, Nelson A, Jarvis A (2007). An evaluation of void-filling interpolation methods for SRTM data. Int J Geogr Inf Sci, 21(9): 983–1008

    Article  Google Scholar 

  • Rigon R, Rinaldo A, Rodriguez-Iturbe I (1994). On landscape selforganization. J Geophys Res, 99(11): 911–971

    Google Scholar 

  • Riley S J, DeGloria S D, Elliot R (1999). A terrain ruggedness index that quantifies topographic heterogeneity. Intermt J Sci, 5(1–4): 23–27

    Google Scholar 

  • Ringrose P S, Migon P (1997). Analysis of digital elevation data for the Scottish Highlands and recognition of pre-Quaternary elevated surfaces. Geol Soc Lond Spec Publ, 120(1): 25–35

    Article  Google Scholar 

  • Rowberry M D (2012). A comparison of three terrain parameters that may be used to identify denudation surfaces within a GIS: a case study from Wales, United Kingdom. Comput Geosci, 43: 147–158

    Article  Google Scholar 

  • Rowberry M D, Brewer P A, Macklin M G (2007).The number, form and origin of sub-horizontal surfaces in north Ceredigion, Wales UK.Norwegian Journal of Geology/Norsk Geologisk Forening, 87(1–2): 207–222

    Google Scholar 

  • Royden L H, Burchfiel B C, King R W, Wang E, Chen Z, Shen F, Liu Y (1997). Surface deformation and lower crustal flow in Eastern Tibet. Science, 276(5313):788–790

    Article  Google Scholar 

  • Schoenbohm L M, Whipple K X, Burchfiel B C, Chen L (2004). Geomorphic constraints on surface uplift, exhumation, and plateau growth in the Red River region, Yunnan Province, China. Geol Soc Am Bull, 116(7): 895–909

    Article  Google Scholar 

  • Sevon W D, Potter N Jr, Crowl G (1983). Appalachian peneplains: an historical review. Earth Sci Hist, 2(2): 156–164

    Article  Google Scholar 

  • Shackleton R, Chang C (1988). Cenozoic uplift and deformation of the Tibetan Plateau: the geomorphological evidence. Philosophical Transactions of the Royal Society A, 327(1594): 365–377

    Article  Google Scholar 

  • Shen J, Wang S M, Wang Y, Qiang X K, **ao H F, **ao X Y (2010). Uplift events of the Qinghai–Tibetan Plateau and environmental evolution of the southwest monsoon since 2.7 Ma, recorded in a long lake sediment core from Heqing, China. Quat Int, 218(1–2): 67–73

    Article  Google Scholar 

  • Strobl M, Hetzel R, Ding L, Zhang L, Hampel A (2010). Preservation of a large-scale bedrock peneplain suggests long-term landscape stability in southern Tibet. Z Geomorphol, 54(4): 453–466

    Article  Google Scholar 

  • Su H, Ming Q Z, Pan B T, Gao H S, Zhang W X, Dong M, Shi Z T (2013). The analysis and discussions on the chronological frame of **shajiang River valley-drainage. J Mt Sci, 31(6): 685–692

    Google Scholar 

  • Van der Beek P, van Melle J, Guillot S, Pêcher A, Reiners P W, Nicolescu S, Latif M (2009). Eocene Tibetan Plateau remnants preserved in the northwest Himalaya. Nat Geosci, 2(5): 364–368

    Article  Google Scholar 

  • Twidale C R(1976). On the survival of paleoforms. Am J Sci, 276(1): 77–95

    Article  Google Scholar 

  • Vandenberghe J (2016). From planation surfaces to river valleys. BSGLg, 67: 93–106

    Google Scholar 

  • Veselský M, Bandura P, Burian L, Harciníková T, Bella P (2015). Semiautomated recognition of planation surfaces and other flat landforms: a case study from the Aggtelek Karst, Hungary. Open Geosciences, 7 (1): 799–811

    Article  Google Scholar 

  • Wang E, Burchfiel B C (2000). Late Cenozoic to Holocene deformation in southwestern Sichuan and adjacent Yunnan, China, and its role in formation of the southeastern part of the Tibetan Plateau. Geol Soc Am Bull, 112(3): 413–423

    Article  Google Scholar 

  • Wang E, Burchfiel B C, Royden L H, Chen L, Chen J, Li W, Chen Z (1998). Late Cenozoic **anshuihe-**aojiang, Red River, and Dali fault systems of southwestern Sichuan and central Yunnan, China. Spec Pap Geol Soc Am, 327: 1–108

    Google Scholar 

  • Wang X, Lu H, Vandenberghe J, Zheng S, van Balen R (2012). Late Miocene uplift of the NETibetan Plateau inferred from basin filling, planation and fluvial terraces in the Huang Shui catchment. Global Planet Change, 88–89: 10–19

    Article  Google Scholar 

  • Wang Y, Pan B, Gao H, Liu Y (2005). Planation surface extraction and quantitative analysis based on high-resolution digital elevation models. International Geoscience and Remote Sensing Symposium, 8: 5369–5371

    Google Scholar 

  • Whipple K X, Dibiase R A, Ouimet W B, Forte A M (2017). Preservation or piracy: diagnosing low-relief, high-elevation surface formation mechanisms. Geology, 45(1): 91–94

    Article  Google Scholar 

  • Widdowson M (1997). The geomorphological and geological importance of palaeosurfaces. Geol Soc Lond Spec Publ, 120(1): 1–12

    Article  Google Scholar 

  • Wobus C W, Crosby B T, Whipple K X (2006). Hanging valleys in fluvial systems: controls on occurrence and implications for landscape evolution. J Geophys Res, 111(F2): F02017

    Article  Google Scholar 

  • **e M (1990). Neotectonic uplift velocity and type along the Changjiang River during Quaternary. Quaternary Sciences, 4: 308–315 (in Chinese)

    Google Scholar 

  • **ong L Y, Tang G A, Zhu A X, Qian Y Q (2017). A peak-cluster assessment method for the identification of upland planation surfaces. Int J Geogr Inf Sci, 31(2): 387–404

    Article  Google Scholar 

  • Yang R, Willett S D, Goren L (2015). In situ low-relief landscape formation as a result of river network disruption. Nature, 520(7548): 526–529

    Article  Google Scholar 

  • Zadeh L A (1968). Fuzzy algorithms. Inf Control, 12(2): 94–102

    Article  Google Scholar 

  • Zárate M, Folguera A (2014). Planation surfaces of Central Western Argentina. In: Rabassa J, Ollier C, eds. Gondwana Landscapes in Southern South America. Springer Netherlands, 365–392

    Chapter  Google Scholar 

  • Zevenbergen L W, Thorne C R (1987). Quantitative analysis of land surface topography. Earth Surf Process Landf, 12(1): 47–56

    Article  Google Scholar 

  • Zhang K, Huang Y K (1995). Researches on the planation surfaces in north Guangdong. Trop Geogr, 15(4): 295–305

    Google Scholar 

  • Zhang Y C, Li J J, Zhu J J, Kuang M S, Chen Y (1999). Studies on development of Yuanmou basin and valleys during Late Cenozoic. Journal of Lanzhou University (Natural Sciences), 35(1): 199–205

    Google Scholar 

  • Zheng H, Clift P D, Wang P, Tada R, Jia J, He M, Jourdan F (2013). Pre-Miocene birth of the Yangtze River. Proc Natl Acad Sci USA, 110(19): 7556–7561

    Article  Google Scholar 

  • Zhou S, Xu L, Cui J, Zhang X, Zhao J (2005). Geomorphologic evolution and environmental changes in the Shaluli Mountain region during the Quaternary. Chin Sci Bull, 50(1): 52–57

    Article  Google Scholar 

  • Zhu R X, Potts R, Pan Y X, Lü L Q, Yao H T, Deng C L, Qin H F (2008). Paleomagnetism of the Yuanmou Basin near the southeastern margin of the Tibetan Plateau and its constraints on late Neogene sedimentation and tectonic rotation. Earth Planet Sci Lett, 272(1–2): 97–104

    Article  Google Scholar 

Download references

Acknowledgements

We should like to thank Dongsheng GUAN for his assistance during fieldwork. We acknowledge **aofei HU and Sean F. GALLEN for their help in conducting river profile analyses, Wentao QI for his help in terrain analysis.We thank Paul BESSIN from Le Mans University and other anonymous reviewers for their valuable comments and helpful suggestions. We are grateful to Edward Derbyshire for editing language for the manuscript. This research was supported financially by the National Natural Science Foundation of China (Grant Nos. 41471008 and 41730637) and the United Fund of the National Scientific Foundation of China and Yunnan Province (U0933604), and the Fundamental Research Funds for the Central Universities (lzujbky-2013–272).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongshan Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Gao, H., Pan, B. et al. Quantitative analysis of planation surfaces of the upper Yangtze River in the Sichuan-Yunnan Region, Southwest China. Front. Earth Sci. 13, 55–74 (2019). https://doi.org/10.1007/s11707-018-0707-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11707-018-0707-y

Keywords

Navigation