Log in

Enhanced catalytic activity and thermal stability by highly dispersed Pd-based nanocatalysts embedded in ZrO2 hollow spheres

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Sintering resistant noble metal nanoparticles are critical to the development of advanced catalysts with high activity and stability. Herein, we reported the construction of highly dispersed Pd nanoparticles loaded at the inner wall of ZrO2 hollow spheres (Pd@HS-ZrO2), which shows improved activity and thermal stability over references in the Pd-ZrO2 (catalyst-support) system. Even after 800 °C high temperature calcination, the Pd nanoparticles and ZrO2 hollow spheres did not undergo morphological changes. The Pd@HS-ZrO2 manifests batter catalytic activity and thermal stability than the counterpart Pd/ZrO2 catalysts. In comparison to Pd/ZrO2-800, Pd@ZrO2-800 exhibits a 25°C reduction in the temperature required for complete conversion of CO. The enhanced catalytic activity and thermal stability of Pd@HS-ZrO2 can be attributed to the nanoconfinement effect offered by the 10 nm wall thickness of the ZrO2 hollow spheres, which suppresses the coarsening of the Pd nanoparticles (active center for catalysis).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Prieto G, Tüysüz H, Duyckaerts N, et al. Hollow nano- and microstructures as catalysts. Chemical Reviews, 2016, 116(22): 14056–14119

    Article  CAS  Google Scholar 

  2. Alonso F, Beletskaya I P, Yus M. Metal-mediated reductive hydrodehalogenation of organic halides. Chemical Reviews, 2002, 102(11): 4009–4092

    Article  CAS  Google Scholar 

  3. Zhang J, Bian D, Shao G, et al. Facile synthesis of sandwich-like MnO2@Pd@MnO2 hollow spheres with superior catalytic stability and activity. Journal of Alloys and Compounds, 2021, 870: 159415

    Article  CAS  Google Scholar 

  4. Cheng N, Banis M N, Liu J, et al. Extremely stable platinum nanoparticles encapsulated in a zirconia nanocage by area-selective atomic layer deposition for the oxygen reduction reaction. Advanced Materials, 2015, 27(2): 277–281

    Article  CAS  Google Scholar 

  5. Spezzati G, Su Y, Hofmann J P, et al. Atomically dispersed Pd-O species on CeO2 (1 1 1) as highly active sites for low-temperature CO oxidation. ACS Catalysis, 2017, 7(10): 6887–6891

    Article  CAS  Google Scholar 

  6. Chen J, Wang D, Qi J, et al. Monodisperse hollow spheres with sandwich heterostructured shells as high-performance catalysts via an extended SiO2 template method. Small, 2015, 11(4): 420–425

    Article  CAS  Google Scholar 

  7. Kumar A, Ramani V. Strong metal–support interactions enhance the activity and durability of platinum supported on tantalum-modified titanium dioxide electrocatalysts. ACS Catalysis, 2014, 4(5): 1516–1525

    Article  CAS  Google Scholar 

  8. Tauster S. Strong metal–support interactions. Accounts of Chemical Research, 1987, 20(11): 389–394

    Article  CAS  Google Scholar 

  9. Zhang J, Zhu D, Yan J, et al. Strong metal–support interactions induced by an ultrafast laser. Nature Communications, 2021, 12(1): 6665

    Article  CAS  Google Scholar 

  10. Luo Z, Zhao G, Pan H, et al. Strong metal–support interaction in heterogeneous catalysts. Advanced Energy Materials, 2022, 12(37): 2201395

    Article  CAS  Google Scholar 

  11. Tang M, Li S, Chen S, et al. Facet-dependent oxidative strong metal–support interactions of palladium–TiO2 determined by in situ transmission electron microscopy. Angewandte Chemie International Edition, 2021, 60(41): 22339–22344

    Article  CAS  Google Scholar 

  12. Liu S, Xu W, Niu Y, et al. Ultrastable Au nanoparticles on titania through an encapsulation strategy under oxidative atmosphere. Nature Communications, 2019, 10(1): 5790

    Article  CAS  Google Scholar 

  13. Oschatz M, Lamme W S, **e J, et al. Ordered mesoporous materials as supports for stable iron catalysts in the Fischer–Tropsch synthesis of lower olefins. ChemCatChem, 2016, 8(17): 2846–2852

    Article  CAS  Google Scholar 

  14. Song S, Liu X, Li J, et al. Confining the nucleation of Pt to in situ form (Pt-enriched cage)@CeO2 core@shell nanostructure as excellent catalysts for hydrogenation reactions. Advanced Materials, 2017, 29(28): 1700495

    Article  Google Scholar 

  15. Chen Y, Ji S, Wang Y, et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angewandte Chemie International Edition, 2017, 56(24): 6937–6941

    Article  CAS  Google Scholar 

  16. Yue L, Li J, Chen C, et al. Thermal-stable Pd@mesoporous silica core–shell nanocatalysts for dry reforming of methane with good coke-resistant performance. Fuel, 2018, 218: 335–341

    Article  CAS  Google Scholar 

  17. Tian Y, Duan H, Zhang B, et al. Template guiding for the encapsulation of uniformly subnanometric platinum clusters in beta-zeolites enabling high catalytic activity and stability. Angewandte Chemie International Edition, 2021, 60(40): 21713–21717

    Article  CAS  Google Scholar 

  18. Yang F, Wu C, Yu H, et al. The fabrication of hollow ZrO2 nanoreactors encapsulating Au-Fe2O3 dumbbell nanoparticles for CO oxidation. Nanoscale, 2021, 13(14): 6856–6862

    Article  CAS  Google Scholar 

  19. Bi F, Zhao Z, Yang Y, et al. Chlorine-coordinated Pd single atom enhanced the chlorine resistance for volatile organic compound degradation: mechanism study. Environmental Science & Technology, 2022, 56(23): 17321–17330

    Article  CAS  Google Scholar 

  20. Zhang X, Bi F, Zhao Z, et al. Boosting toluene oxidation by the regulation of Pd species on UiO-66: synergistic effect of Pd species. Journal of Catalysis, 2022, 413: 59–75

    Article  CAS  Google Scholar 

  21. Bi F, Zhao Z, Yang Y, et al. Efficient degradation of toluene over ultra-low Pd supported on UiO-66 and its functional materials: reaction mechanism, water-resistance, and influence of SO2. Environmental Functional Materials, 2022, 1(2): 166–181

    Article  Google Scholar 

  22. Xu H, Zhang Z, Liu J, et al. Entropy-stabilized single-atom Pd catalysts via high-entropy fluorite oxide supports. Nature Communications, 2020, 11(1): 3908

    Article  CAS  Google Scholar 

  23. Sun X, Li Y. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angewandte Chemie International Edition, 2004, 43(5): 597–601

    Article  Google Scholar 

  24. Chen S, Fu S, Lang Y, et al. Submicronic spherical inclusion black pigment by double-shell reaction sintering. Journal of the American Ceramic Society, 2020, 103(3): 1520–1526

    Article  CAS  Google Scholar 

  25. Hong E, Kim C, Lim D H, et al. Catalytic methane combustion over Pd/ZrO2 catalysts: effects of crystalline structure and textural properties. Applied Catalysis B: Environmental, 2018, 232: 544–552

    Article  CAS  Google Scholar 

  26. Wu Y, Chen J, Hu W, et al. Phase transformation and oxygen vacancies in Pd/ZrO2 for complete methane oxidation under lean conditions. Journal of Catalysis, 2019, 377: 565–576

    Article  CAS  Google Scholar 

  27. Wang Y, Zhang C, He H. Insight into the role of Pd state on Pd-based catalysts in o-xylene oxidation at low temperature. ChemCatChem, 2018, 10(5): 998–1004

    Article  Google Scholar 

  28. Li P, He C, Cheng J, et al. Catalytic oxidation of toluene over Pd/Co3AlO catalysts derived from hydrotalcite-like compounds: effects of preparation methods. Applied Catalysis B: Environmental, 2011, 101(3–4): 570–579

    Article  CAS  Google Scholar 

  29. Park J H, Cho J H, Kim Y J, et al. Hydrothermal stability of Pd/ZrO2 catalysts for high temperature methane combustion. Applied Catalysis B: Environmental, 2014, 160–161: 135–143

    Article  Google Scholar 

  30. Patil K N, Prasad D, Bhanushali J T, et al. Chemoselective hydrogenation of cinnamaldehyde over a tailored oxygen-vacancy-rich Pd@ZrO2 catalyst. New Journal of Chemistry, 2021, 45(12): 5659–5681

    Article  CAS  Google Scholar 

  31. Vedyagin A A, Volodin A M, Kenzhin R M, et al. CO oxidation over Pd/ZrO2 catalysts: role of support’s donor sites. Molecules, 2016, 21(10): 1289

    Article  Google Scholar 

  32. Zhao S, Yang Y, Bi F, et al. Oxygen vacancies in the catalyst: efficient degradation of gaseous pollutants. Chemical Engineering Journal, 2023, 454(3): 140376

    Article  CAS  Google Scholar 

  33. Rao R, Ma S, Gao B, et al. Recent advances of metal-organic framework-based and derivative materials in the heterogeneous catalytic removal of volatile organic compounds. Journal of Colloid and Interface Science, 2023, 636: 55–72

    Article  CAS  Google Scholar 

  34. Zhang X, Li H, Lv X, et al. Facile synthesis of highly efficient amorphous Mn-MIL-100 catalysts: formation mechanism and structure changes during application in CO oxidation. Chemistry, 2018, 24(35): 8822–8832

    Article  CAS  Google Scholar 

  35. Zhang X, Hou F, Yang Y, et al. A facile synthesis for cauliflower like CeO2 catalysts from Ce-BTC precursor and their catalytic performance for CO oxidation. Applied Surface Science, 2017, 423: 771–779

    Article  CAS  Google Scholar 

  36. Suchorski Y, Kozlov S M, Bespalov I, et al. The role of metal/oxide interfaces for long-range metal particle activation during CO oxidation. Nature Materials, 2018, 17(6): 519–522

    Article  CAS  Google Scholar 

  37. ** L Y, Ma R H, Lin J J, et al. Bifunctional Pd/Cr2O3–ZrO2 catalyst for the oxidation of volatile organic compounds. Industrial & Engineering Chemistry Research, 2011, 50(18): 10878–10882

    Article  CAS  Google Scholar 

  38. Zhang Z, Zhang L, Hülsey M J, et al. Zirconia phase effect in Pd/ZrO2 catalyzed CO2 hydrogenation into formate. Molecular Catalysis, 2019, 475: 110461

    Article  CAS  Google Scholar 

  39. Yang X, Ma X, Yu X, et al. Exploration of strong metal–support interaction in zirconia supported catalysts for toluene oxidation. Applied Catalysis B: Environmental, 2020, 263: 118355

    Article  CAS  Google Scholar 

  40. Bi F, Zhang X, **ang S, et al. Effect of Pd loading on ZrO2 support resulting from pyrolysis of UiO-66: application to CO oxidation. Journal of Colloid and Interface Science, 2020, 573: 11–20

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial support from the National Natural Science Foundation of China (Grant Nos. 52173257, 52162028, and 51962015) and the Jiangxi Double Thousand Plan (Grant No. jxsq2018102141).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuan** Tian or Chang-An Wang.

Electronic Supplementary Material

11706_2023_649_MOESM1_ESM.pdf

Enhanced catalytic activity and thermal stability by highly dispersed Pd-based nanocatalysts embedded in ZrO2 hollow spheres

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Zhang, J., Xu, M. et al. Enhanced catalytic activity and thermal stability by highly dispersed Pd-based nanocatalysts embedded in ZrO2 hollow spheres. Front. Mater. Sci. 17, 230649 (2023). https://doi.org/10.1007/s11706-023-0649-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11706-023-0649-5

Keywords

Navigation