Log in

Antibacterial hydroxyapatite coatings on titanium dental implants

  • Review Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Titanium and its alloys are often used as substrates for dental implants due to their excellent mechanical properties and good biocompatibility. However, their ability to bind to neighboring bone is limited due to the lack of biological activity. At the same time, they show poor antibacterial ability which can easily cause bacterial infection and chronic inflammation, eventually resulting in implant failure. The preparation of composite hydroxyapatite coatings with antibacterial ability can effectively figure out these concerns. In this review, the research status and development trends of antibacterial hydroxyapatite coatings constructed on titanium and its alloys are analyzed and reviewed. This review may provide valuable reference for the preparation and application of high-performance and multi-functional dental implant coatings in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dux K E. Implantable materials update. Clinics in Podiatric Medicine and Surgery, 2019, 36: 535–542

    Article  Google Scholar 

  2. Bai L, Du Z, Du J, et al. A multifaceted coating on titanium dictates osteoimmunomodulation and osteo/angio-genesis towards ameliorative osseointegration. Biomaterials, 2018, 162: 154–169

    Article  CAS  Google Scholar 

  3. Zhao Y, Sun Y H, Lan W W, et al. Self-assembled nanosheets on NiTi alloy facilitate endothelial cell function and manipulate macrophage immune response. Journal of Materials Science and Technology, 2021, 78: 110–120

    Article  CAS  Google Scholar 

  4. Nuswantoro N F, Manjas M, Suharti N, et al. Hydroxyapatite coating on titanium alloy TTZ for increasing osseointegration and reducing inflammatory response in vivo on Rattus norvegicus Wistar rats. Ceramics International, 2021, 47(11): 16094–16100

    Article  CAS  Google Scholar 

  5. Cho H R, Choe H C. Morphology of hydroxyapatite and Sr coatings deposited using radio frequency-magnetron sputtering method on nanotube formed Ti—6Al—4V alloy. Thin Solid Films, 2021, 735: 138893

    Article  CAS  Google Scholar 

  6. Fathi A M, Ahmed M K, Afifi M, et al. Taking hydroxyapatite-coated titanium implants two steps forward: surface modification using graphene mesolayers and a hydroxyapatite-reinforced polymeric scaffold. ACS Biomaterials Science & Engineering, 2021, 7: 360–372

    Article  CAS  Google Scholar 

  7. Harun W S W, Asri R I M, Alias J, et al. A comprehensive review of hydroxyapatite-based coatings adhesion on metallic biomaterials. Ceramics International, 2018, 44: 1250–1268

    Article  CAS  Google Scholar 

  8. Zhao Y, Bai L, Sun Y, et al. Low-temperature alkali corrosion induced growth of nanosheet layers on NiTi alloy and their corrosion behavior and biological responses. Corrosion Science, 2021, 190: 109654

    Article  CAS  Google Scholar 

  9. Weng Z M, Bai L, Liu Y L, et al. Osteogenic activity, antibacterial ability, and Ni release of Mg-incorporated Ni—Ti—O nanopore coatings on NiTi alloy. Applied Surface Science, 2019, 486: 441–451

    Article  CAS  Google Scholar 

  10. Chen Z, Wang Z, Qiu W, et al. Overview of antibacterial strategies of dental implant materials for the prevention of peri-implantitis. Bioconjugate Chemistry, 2021, 32: 627–638

    Article  CAS  Google Scholar 

  11. Guo C, Cui W, Wang X, et al. Poly-l-lysine/sodium alginate coating loading nanosilver for improving the antibacterial effect and inducing mineralization of dental implants. ACS Omega, 2020, 5: 10562–10571

    Article  CAS  Google Scholar 

  12. Kiran A S K, Kizhakeyil A, Ramalingam R, et al. Drug loaded electrospun polymer/ceramic composite nanofibrous coatings on titanium for implant related infections. Ceramics International, 2019, 45: 18710–18720

    Article  Google Scholar 

  13. Wu S, Xu J, Zou L, et al. Long-lasting renewable antibacterial porous polymeric coatings enable titanium biomaterials to prevent and treat peri-implant infection. Nature Communications, 2021, 12: 3303

    Article  CAS  Google Scholar 

  14. Lin Q, Huang D, Du J, et al. Nano-hydroxyapatite crystal formation based on calcified TiO2 nanotube arrays. Applied Surface Science, 2019, 478: 237–246

    Article  CAS  Google Scholar 

  15. Qiaoxia L, Yujie Z, Meng Y, et al. Hydroxyapatite/tannic acid composite coating formation based on Ti modified by TiO2 nanotubes. Colloids and Surfaces B: Biointerfaces, 2020, 196: 111304

    Article  Google Scholar 

  16. Carrado A, Perrin-Schmitt F, Le Q V, et al. Nanoporous hydroxyapatite/sodium titanate bilayer on titanium implants for improved osteointegration. Dental Materials, 2017, 33: 321–332

    Article  CAS  Google Scholar 

  17. Fihri A, Len C, Varma R S, et al. Hydroxyapatite: a review of syntheses, structure and applications in heterogeneous catalysis. Coordination Chemistry Reviews, 2017, 347: 48–76

    Article  CAS  Google Scholar 

  18. Liu X, He D, Zhou Z, et al. In vitro bioactivity and antibacterial performances of atmospheric plasma sprayed c-axis preferential oriented hydroxyapatite coatings. Surface and Coatings Technology, 2021, 417: 127209

    Article  CAS  Google Scholar 

  19. Priyadarshini B, Vijayalakshmi U. In vitro bioactivity, biocompatibility and corrosion resistance of multi-ionic (Ce/Si) co-doped hydroxyapatite porous coating on Ti—6Al—4 V for bone regeneration applications. Materials Science and Engineering C, 2021, 119: 111620

    Article  CAS  Google Scholar 

  20. Stevanovic M, Dosic M, Jankovic A, et al. Gentamicin-loaded bioactive hydroxyapatite/chitosan composite coating electrodeposited on titanium. ACS Biomaterials Science & Engineering, 2018, 4: 3994–4007

    Article  CAS  Google Scholar 

  21. Vu A A, Bose S. Natural antibiotic oregano in hydroxyapatite-coated titanium reduces osteoclastic bone resorption for orthopedic and dental applications. ACS Applied Materials & Interfaces, 2020, 12: 52383–52392

    Article  CAS  Google Scholar 

  22. Bakhshandeh S, Yavari S A. Electrophoretic deposition: a versatile tool against biomaterial associated infections. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2018, 6(8): 1128–1148

    Article  CAS  Google Scholar 

  23. Spengler C, Nolle F, Mischo J, et al. Strength of bacterial adhesion on nanostructured surfaces quantified by substrate morphometry. Nanoscale, 2019, 11: 19713–19722

    Article  CAS  Google Scholar 

  24. Wu S, Altenried S, Zogg A, et al. Role of the surface nanoscale roughness of stainless steel on bacterial adhesion and microcolony formation. ACS Omega, 2018, 3: 6456–6464

    Article  CAS  Google Scholar 

  25. Pranjali P, Meher M K, Raj R, et al. Physicochemical and antibacterial properties of pegylated zinc oxide nanoparticles dispersed in peritoneal dialysis fluid. ACS Omega, 2019, 4: 19255–19264

    Article  CAS  Google Scholar 

  26. Skovdal S M, Jorgensen N P, Petersen E, et al. Ultra-dense polymer brush coating reduces Staphylococcus epidermidis biofilms on medical implants and improves antibiotic treatment outcome. Acta Biomaterialia, 2018, 76: 46–55

    Article  CAS  Google Scholar 

  27. Fang Z, Chen J, Zhu Y, et al. High-throughput screening and rational design of biofunctionalized surfaces with optimized biocompatibility and antimicrobial activity. Nature Communications, 2021, 12: 3757

    Article  CAS  Google Scholar 

  28. Qiao Y, ** Y, Zhang H, et al. Laser-activatable CuS nanodots to treat multidrug-resistant bacteria and release copper ion to accelerate healing of infected chronic nonhealing wounds. ACS Applied Materials & Interfaces, 2019, 11: 3809–3822

    Article  CAS  Google Scholar 

  29. Zhang G, Wu Z, Yang Y, et al. A multifunctional antibacterial coating on bone implants for osteosarcoma therapy and enhanced osteointegration. Chemical Engineering Journal, 2022, 428: 131155

    Article  CAS  Google Scholar 

  30. Li B, Ma J, Wang D, et al. Self-adjusting antibacterial properties of Ag-incorporated nanotubes on micro-nanostructured Ti surfaces. Biomaterials Science, 2019, 7: 4075–4087

    Article  CAS  Google Scholar 

  31. Liu R, Memarzadeh K, Chang B, et al. Antibacterial effect of copper-bearing titanium alloy (Ti—Cu) against Streptococcus mutans and Porphyromonas gingivalis. Scientific Reports, 2016, 6: 29985

    Article  CAS  Google Scholar 

  32. Xu N, Fu J, Zhao L, et al. Biofunctional elements incorporated nano/microstructured coatings on titanium implants with enhanced osteogenic and antibacterial performance. Advanced Healthcare Materials, 2020, 9(23): 2000681

    Article  CAS  Google Scholar 

  33. Wang X, Yan L, Ye T, et al. Osteogenic and antiseptic nanocoating by in situ chitosan regulated electrochemical deposition for promoting osseointegration. Materials Science and Engineering C, 2019, 102: 415–426

    Article  CAS  Google Scholar 

  34. Stanić V, Dimitrijević S, Antić-Stanković J, et al. Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders. Applied Surface Science, 2010, 256: 6083–6089

    Article  Google Scholar 

  35. Karbowniczek J, Cordero-Arias L, Virtanen S, et al. Electrophoretic deposition of organic/inorganic composite coatings containing ZnO nanoparticles exhibiting antibacterial properties. Materials Science & Engineering C, 2017, 77: 780–789

    Article  CAS  Google Scholar 

  36. Karthikeyan K, Chandraprabha M N, Hari Krishna R, et al. Optical and antibacterial activity of biogenic core—shell ZnO@TiO2 nanoparticles. Journal of the Indian Chemical Society, 2022, 99(3): 100361

    Article  CAS  Google Scholar 

  37. Thukkaram M, Coryn R, Asadian M, et al. Fabrication of microporous coatings on titanium implants with improved mechanical, antibacterial, and cell-interactive properties. ACS Applied Materials & Interfaces, 2020, 12: 30155–30169

    Article  CAS  Google Scholar 

  38. Sivaraj D, Vijayalakshmi K, Ganeshkumar A, et al. Tailoring Cu substituted hydroxyapatite/functionalized multiwalled carbon nanotube composite coating on 316L SS implant for enhanced corrosion resistance, antibacterial and bioactive properties. International Journal of Pharmaceutics, 2020, 590: 119946

    Article  CAS  Google Scholar 

  39. Jugowiec D, Łukaszczyk A, Cieniek Ł, et al. Influence of the electrophoretic deposition route on the microstructure and properties of nano-hydroxyapatite/chitosan coatings on the Ti—13Nb—13Zr alloy. Surface and Coatings Technology, 2017, 324: 64–79

    Article  CAS  Google Scholar 

  40. Chen H, Wang C, Yang X, et al. Construction of surface HA/TiO2 coating on porous titanium scaffolds and its preliminary biological evaluation. Materials Science and Engineering C, 2017, 70: 1047–1056

    Article  CAS  Google Scholar 

  41. Fu X, Zhou X, Liu P, et al. The optimized preparation of HA/L-TiO2/D-TiO2 composite coating on porous titanium and its effect on the behavior osteoblasts. Regenerative Biomaterials, 2020, 7: 505–514

    Article  CAS  Google Scholar 

  42. Fathyunes L, Khalil-Allafi J, Sheykholeslami S O R, et al. Biocompatibility assessment of graphene oxide—hydroxyapatite coating applied on TiO2 nanotubes by ultrasound-assisted pulse electrodeposition. Materials Science and Engineering C, 2018, 87: 10–21

    Article  CAS  Google Scholar 

  43. Lai Y L, Lai S B, Yen S K. Paclitaxel/hydroxyapatite composite coatings on titanium alloy for biomedical applications. Materials Science and Engineering C, 2017, 79: 622–628

    Article  CAS  Google Scholar 

  44. Fu X, Liu P, Zhao D, et al. Effects of nanotopography regulation and silicon do** on angiogenic and osteogenic activities of hydroxyapatite coating on titanium implant. International Journal of Nanomedicine, 2020, 15: 4171–4189

    Article  CAS  Google Scholar 

  45. Shi Y Y, Li M, Liu Q, et al. Electrophoretic deposition of graphene oxide reinforced chitosan—hydroxyapatite nanocomposite coatings on Ti substrate. Journal of Materials Science: Materials in Medicine, 2016, 27: 48

    CAS  Google Scholar 

  46. Chernozem R V, Surmeneva M A, Krause B, et al. Functionalization of titania nanotubes with electrophoretically deposited silver and calcium phosphate nanoparticles: structure, composition and antibacterial assay. Materials Science and Engineering C, 2019, 97: 420–430

    Article  CAS  Google Scholar 

  47. Horandghadim N, Khalil-Allafi J, Kaçar E, et al. Biomechanical compatibility and electrochemical stability of HA/Ta2O5 nanocomposite coating produced by electrophoretic deposition on superelastic NiTi alloy. Journal of Alloys and Compounds, 2019, 799: 193–204

    Article  CAS  Google Scholar 

  48. Liu F, Wang X, Chen T, et al. Hydroxyapatite/silver electrospun fibers for anti-infection and osteoinduction. Journal of Advanced Research, 2020, 21: 91–102

    Article  CAS  Google Scholar 

  49. Fu C, Zhang X, Savino K, et al. Antimicrobial silver—hydroxyapatite composite coatings through two-stage electrochemical synthesis. Surface and Coatings Technology, 2016, 301: 13–19

    Article  CAS  Google Scholar 

  50. Erakovic S, Jankovic A, Tsui G C, et al. Novel bioactive antimicrobial lignin containing coatings on titanium obtained by electrophoretic deposition. International Journal of Molecular Sciences, 2014, 15: 12294–12322

    Article  Google Scholar 

  51. Mokabber T, Cao H T, Norouzi N, et al. Antimicrobial electrodeposited silver-containing calcium phosphate coatings. ACS Applied Materials & Interfaces, 2020, 12: 5531–5541

    Article  CAS  Google Scholar 

  52. Yan L, **ang Y, Yu J, et al. Fabrication of antibacterial and antiwear hydroxyapatite coatings via in situ chitosan-mediated pulse electrochemical deposition. ACS Applied Materials & Interfaces, 2017, 9: 5023–5030

    Article  CAS  Google Scholar 

  53. Yu W Z, Zhang Y, Liu X, et al. Synergistic antibacterial activity of multi components in lysozyme/chitosan/silver/hydroxyapatite hybrid coating. Materials & Design, 2018, 139: 351–362

    Article  CAS  Google Scholar 

  54. Ghosh R, Swart O, Westgate S, et al. Antibacterial copper—hydroxyapatite composite coatings via electrochemical synthesis. Langmuir, 2019, 35: 5957–5966

    Article  CAS  Google Scholar 

  55. Hadidi M, Bigham A, Saebnoori E, et al. Electrophoretic-deposited hydroxyapatite—copper nanocomposite as an antibacterial coating for biomedical applications. Surface and Coatings Technology, 2017, 321: 171–179

    Article  CAS  Google Scholar 

  56. Huang Y, Hao M, Nian X, et al. Strontium and copper co-substituted hydroxyapatite-based coatings with improved antibacterial activity and cytocompatibility fabricated by electrodeposition. Ceramics International, 2016, 42: 11876–11888

    Article  CAS  Google Scholar 

  57. Wang Y, Yan L, Cheng R, et al. Multifunctional HA/Cu nano-coatings on titanium using PPy coordination and do** via pulse electrochemical polymerization. Biomaterials Science, 2018, 6: 575–585

    Article  CAS  Google Scholar 

  58. Mehrvarz A, Khalil-Allafi J, Khosrowshahi A K. Biocompatibility and antibacterial behavior of electrochemically deposited hydroxyapatite/ZnO porous nanocomposite on NiTi biomedical alloy. Ceramics International, 2022, 48(11): 16326–16336

    Article  CAS  Google Scholar 

  59. Yavas A, Güler S, Onak G, et al. Li-doped ZnO nanowires on flexible carbon fibers as highly efficient hybrid antibacterial structures. Journal of Alloys and Compounds, 2022, 891: 162010

    Article  CAS  Google Scholar 

  60. Geuli O, Lewinstein I, Mandler D. Composition-tailoring of ZnO—hydroxyapatite nanocomposite as bioactive and antibacterial coating. ACS Applied Nano Materials, 2019, 2: 2946–2957

    Article  CAS  Google Scholar 

  61. He X, Huang Z, Liu W, et al. Electrospun polycaprolactone/hydroxyapatite/ZnO films as potential biomaterials for application in bone-tendon interface repair. Colloids and Surfaces B: Biointerfaces, 2021, 204: 111825

    Article  CAS  Google Scholar 

  62. Ghiyasi Y, Salahi E, Esfahani H. Synergy effect of Urtica dioica and ZnO NPs on microstructure, antibacterial activity and cytotoxicity of electrospun PCL scaffold for wound dressing application. Materials Today: Communications, 2021, 26: 102163

    CAS  Google Scholar 

  63. Manuja A, Kumar B, Kumar R, et al. Metal/metal oxide nanoparticles: toxicity concerns associated with their physical state and remediation for biomedical applications. Toxicology Reports, 2021, 8: 1970–1978

    Article  CAS  Google Scholar 

  64. Ali A H. Experimental investigations on effects of ZnO NPS and annona muricata extract for in vitro and in vivo antibacterial activity. Materials Today: Proceedings, 2022, 57(Part 2): 527–530

    CAS  Google Scholar 

  65. Babu M M, Rao P V, Singh R K, et al. ZnO incorporated high phosphate bioactive glasses for guided bone regeneration implants: enhancement of in vitro bioactivity and antibacterial activity. Journal of Materials Research and Technology, 2021, 15: 633–646

    Article  CAS  Google Scholar 

  66. Yazici H, Habib G, Boone K, et al. Self-assembling antimicrobial peptides on nanotubular titanium surfaces coated with calcium phosphate for local therapy. Materials Science and Engineering C, 2019, 94: 333–343

    Article  CAS  Google Scholar 

  67. Sobolev A, Valkov A, Kossenko A, et al. Bioactive coating on Ti alloy with high osseointegration and antibacterial Ag nanoparticles. ACS Applied Materials & Interfaces, 2019, 11: 39534–39544

    Article  CAS  Google Scholar 

  68. Thukkaram M, Coryn R, Asadian M, et al. Fabrication of microporous coatings on titanium implants with improved mechanical, antibacterial, and cell-interactive properties. ACS Applied Materials & Interfaces, 2020, 12: 30155–30169

    Article  CAS  Google Scholar 

  69. Schwirn K, Lee W, Hillebrand R, et al. Self-ordered anodic aluminum oxide formed by H2SO4 hard anodization. ACS Nano, 2008, 2(2): 302–310

    Article  CAS  Google Scholar 

  70. Jonasova L, Muller F A, Helebrant A, et al. Biomimetic apatite formation on chemically treated titanium. Biomaterials, 2004, 25: 1187–1194

    Article  CAS  Google Scholar 

  71. Fazel M, Salimijazi H R, Shamanian M, et al. Osteogenic and antibacterial surfaces on additively manufactured porous Ti—6Al—4V implants: combining silver nanoparticles with hydrothermally synthesized HA nanocrystals. Materials Science and Engineering C, 2021, 120: 111745

    Article  CAS  Google Scholar 

  72. He X, Zhang X, Wang X, et al. Review of antibacterial activity of titanium-based implants’ surfaces fabricated by micro-arc oxidation. Coatings, 2017, 7(3): 45

    Article  Google Scholar 

  73. Shimabukuro M, Tsutsumi Y, Yamada R, et al. Investigation of realizing both antibacterial property and osteogenic cell compatibility on titanium surface by simple electrochemical treatment. ACS Biomaterials Science & Engineering, 2019, 5: 5623–5630

    Article  CAS  Google Scholar 

  74. Yu S, Guo D, Han J, et al. Enhancing antibacterial performance and biocompatibility of pure titanium by a two-step electrochemical surface coating. ACS Applied Materials & Interfaces, 2020, 12: 44433–44446

    Article  CAS  Google Scholar 

  75. Li B, **a X, Guo M, et al. Biological and antibacterial properties of the micro-nanostructured hydroxyapatite/chitosan coating on titanium. Scientific Reports, 2019, 9: 14052

    Article  Google Scholar 

  76. Yilmaz E, Cakiroglu B, Gokce A, et al. Novel hydroxyapatite/graphene oxide/collagen bioactive composite coating on Ti16Nb alloys by electrodeposition. Materials Science and Engineering C, 2019, 101: 292–305

    Article  CAS  Google Scholar 

  77. Hu H, Lin C, Lui P P Y, et al. Electrochemical deposition of hydroxyapatite with vinyl acetate on titanium implants. Journal of Biomedical Materials Research, 2003, 65A(1): 24–29

    Article  CAS  Google Scholar 

  78. Sobolev A, Wolicki I, Kossenko A, et al. Coating formation on Ti—6Al—4V alloy by micro arc oxidation in molten salt. Materials, 2018, 11(9): 1611

    Article  Google Scholar 

  79. Li B, Yang T, Sun R, et al. Biological and antibacterial properties of composite coatings on titanium surfaces modified by microarc oxidation and sol-gel processing. Dental Materials Journal, 2021, 40: 455–463

    Article  CAS  Google Scholar 

  80. Ziabka M, Kiszka J, Trenczek-Zajac A, et al. Antibacterial composite hybrid coatings of veterinary medical implants. Materials Science and Engineering C, 2020, 112: 110968

    Article  CAS  Google Scholar 

  81. Jaafar A, Hecker C, Arki P, et al. Sol-gel derived hydroxyapatite coatings for titanium implants: a review. Bioengineering, 2020, 7(4): 127

    Article  CAS  Google Scholar 

  82. Mohammad N F, Ahmad R N, Mohd Rosli N L, et al. Sol gel deposited hydroxyapatite-based coating technique on porous titanium niobium for biomedical applications: a mini review. Materials Today: Proceedings, 2021, 41: 127–135

    CAS  Google Scholar 

  83. Azari R, Rezaie H R, Khavandi A. Investigation of functionally graded HA—TiO2 coating on Ti—6Al—4V substrate fabricated by sol-gel method. Ceramics International, 2019, 45: 17545–17555

    Article  CAS  Google Scholar 

  84. Kazemi M, Ahangarani S, Esmailian M, et al. Investigation on the corrosion behavior and biocompatibility of Ti—6Al—4V implant coated with HA/TiN dual layer for medical applications. Surface and Coatings Technology, 2020, 397: 126044

    Article  CAS  Google Scholar 

  85. Domínguez-Trujillo C, Peón E, Chicardi E, et al. Sol-gel deposition of hydroxyapatite coatings on porous titanium for biomedical applications. Surface and Coatings Technology, 2018, 333: 158–162

    Article  Google Scholar 

  86. Tranquillo E, Bollino F. Surface modifications for implants lifetime extension: an overview of sol-gel coatings. Coatings, 2020, 10(6): 589

    Article  CAS  Google Scholar 

  87. Shin D Y, Cheon K H, Song E H, et al. Fluorine-ion-releasing injectable alginate nanocomposite hydrogel for enhanced bioactivity and antibacterial property. International Journal of Biological Macromolecules, 2019, 123: 866–877

    Article  CAS  Google Scholar 

  88. Batebi K, Abbasi Khazaei B, Afshar A. Characterization of solgel derived silver/fluor-hydroxyapatite composite coatings on titanium substrate. Surface and Coatings Technology, 2018, 352: 522–528

    Article  CAS  Google Scholar 

  89. Bertoglio F, De Vita L, D’Agostino A, et al. Increased antibacterial and antibiofilm properties of silver nanoparticles using silver fluoride as precursor. Molecules, 2020, 25(15): 3494

    Article  CAS  Google Scholar 

  90. Madhan Kumar A, Adesina A Y, Hussein M A, et al. PEDOT/FHA nanocomposite coatings on newly developed Ti—Nb—Zr implants: biocompatibility and surface protection against corrosion and bacterial infections. Materials Science and Engineering C, 2019, 98: 482–495

    Article  CAS  Google Scholar 

  91. Shibata S, Suge T, Kimura T, et al. Antibacterial activity of ammonium hexafluorosilicate solution with antimicrobial agents for the prevention of dentin caries. American Journal of Dentistry, 2012, 25: 31–34

    Google Scholar 

  92. Ge X, Leng Y, Bao C, et al. Antibacterial coatings of fluoridated hydroxyapatite for percutaneous implants. Journal of Biomedical Materials Research Part A, 2010, 95: 588–599

    Article  Google Scholar 

  93. Bi Q, Song X, Chen Y, et al. Zn—HA/Bi—HA biphasic coatings on titanium: fabrication, characterization, antibacterial and biological activity. Colloids and Surfaces B: Biointerfaces, 2020, 189: 110813

    Article  CAS  Google Scholar 

  94. Hung K Y, Lo S C, Shih C S, et al. Titanium surface modified by hydroxyapatite coating for dental implants. Surface and Coatings Technology, 2013, 231: 337–345

    Article  CAS  Google Scholar 

  95. Singh H, Kumar R, Prakash C, et al. HA-based coating by plasma spray techniques on titanium alloy for orthopedic applications. Materials Today: Proceedings, 2022, 50(Part 5): 612–628

    CAS  Google Scholar 

  96. Bencina M, Resnik M, Staric P, et al. Use of plasma technologies for antibacterial surface properties of metals. Molecules, 2021, 26(5): 1418

    Article  CAS  Google Scholar 

  97. Sarkar N, Bose S. Controlled delivery of curcumin and vitamin K2 from hydroxyapatite-coated titanium implant for enhanced in vitro chemoprevention, osteogenesis, and in vivo osseointegration. ACS Applied Materials & Interfaces, 2020, 12: 13644–13656

    Article  CAS  Google Scholar 

  98. Bai Y, Chi B X, Ma W, et al. Suspension plasma-sprayed fluoridated hydroxyapatite coatings: effects of spraying power on microstructure, chemical stability and antibacterial activity. Surface and Coatings Technology, 2019, 361: 222–230

    Article  CAS  Google Scholar 

  99. Ke D, Vu A A, Bandyopadhyay A, et al. Compositionally graded doped hydroxyapatite coating on titanium using laser and plasma spray deposition for bone implants. Acta Biomaterialia, 2019, 84: 414–423

    Article  CAS  Google Scholar 

  100. Ullah I, Siddiqui M A, Liu H, et al. Mechanical, biological, and antibacterial characteristics of plasma-sprayed (Sr, Zn) substituted hydroxyapatite coating. ACS Biomaterials Science & Engineering, 2020, 6: 1355–1366

    Article  CAS  Google Scholar 

  101. Ullah I, Xu Q, Jan H U, et al. Effects of strontium and zinc substituted plasma sprayed hydroxyapatite coating on bone-like apatite layer formation and cell—material interaction. Materials Chemistry and Physics, 2022, 275: 125219

    Article  CAS  Google Scholar 

  102. Liu T, Chen Y, Apicella A, et al. Effect of porous microstructures on the biomechanical characteristics of a root analogue implant: an animal study and a finite element analysis. ACS Biomaterials Science & Engineering, 2020, 6: 6356–6367

    Article  CAS  Google Scholar 

  103. Wang C, Hu H, Li Z, et al. Enhanced osseointegration of titanium alloy implants with laser microgrooved surfaces and graphene oxide coating. ACS Applied Materials & Interfaces, 2019, 11: 39470–39483

    Article  CAS  Google Scholar 

  104. Reggente M, Masson P, Dollinger C, et al. Novel alkali activation of titanium substrates to grow thick and covalently bound PMMA layers. ACS Applied Materials & Interfaces, 2018, 10: 5967–5977

    Article  CAS  Google Scholar 

  105. Xu J, Aoki H, Kasugai S, et al. Enhancement of mineralization on porous titanium surface by filling with nano-hydroxyapatite particles fabricated with a vacuum spray method. Materials Science and Engineering C, 2020, 111: 110772

    Article  CAS  Google Scholar 

  106. Deng B W, Bruzzaniti A, Cheng G J. Enhancement of osteoblast activity on nanostructured NiTi/hydroxyapatite coatings on additive manufactured NiTi metal implants by nanosecond pulsed laser sintering. International Journal of Nanomedicine, 2018, 13: 8217–8230

    Article  CAS  Google Scholar 

  107. Deng B, Bruzzaniti A, Cheng G J. Enhancement of osteoblast activity on nanostructured NiTi/hydroxyapatite coatings on additive manufactured NiTi metal implants by nanosecond pulsed laser sintering. International Journal of Nanomedicine, 2018, 13: 8217–8230

    Article  CAS  Google Scholar 

  108. Bai L, Yang Y, Mendhi J, et al. The effects of TiO2 nanotube arrays with different diameters on macrophage/endothelial cell response and ex vivo hemocompatibility. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2018, 6: 6322–6333

    Article  CAS  Google Scholar 

  109. Xue X, Lu L, He D, et al. Antibacterial properties and cytocompatibility of Ti—20Zr—10Nb—4Ta alloy surface with Ag microparticles by laser treatment. Surface and Coatings Technology, 2021, 425: 127716

    Article  CAS  Google Scholar 

  110. Gao A, Hang R, Bai L, et al. Electrochemical surface engineering of titanium-based alloys for biomedical application. Electrochimica Acta, 2018, 271: 699–718

    Article  CAS  Google Scholar 

  111. Liu X, Man H C. Laser fabrication of Ag—HA nanocomposites on Ti6Al4V implant for enhancing bioactivity and antibacterial capability. Materials Science and Engineering C, 2017, 70: 1–8

    Article  CAS  Google Scholar 

  112. Hu X, Xu R, Yu X, et al. Enhanced antibacterial efficacy of selective laser melting titanium surface with nanophase calcium phosphate embedded to TiO2 nanotubes. Biomedical Materials, 2018, 13(4): 045015

    Article  Google Scholar 

  113. Cho H R, Choe H C. Morphology of hydroxyapatite and Sr coatings deposited using radio frequency-magnetron sputtering method on nanotube formed Ti—6Al—4V alloy. Thin Solid Films, 2021, 735: 138893

    Article  CAS  Google Scholar 

  114. Prosolov K A, Belyavskaya O A, Bolat-Ool A A, et al. Antibacterial potential of Zn- and Cu-substituted hydroxyapatite-based coatings deposited by RF-magnetron sputtering. Journal of Physics: Conference Series, 2019, 1393: 012118

    CAS  Google Scholar 

  115. Wu J, Ueda K, Narushima T. Fabrication of Ag and Ta co-doped amorphous calcium phosphate coating films by radiofrequency magnetron sputtering and their antibacterial activity. Materials Science and Engineering C, 2020, 109: 110599

    Article  CAS  Google Scholar 

  116. Prosolov K A, Belyavskaya O A, Linders J, et al. Glancing angle deposition of Zn-doped calcium phosphate coatings by RF magnetron sputtering. Coatings, 2019, 9(4): 220

    Article  Google Scholar 

  117. Li B, **a X, Guo M, et al. Biological and antibacterial properties of the micro-nanostructured hydroxyapatite/chitosan coating on titanium. Scientific Reports, 2019, 9: 14052

    Article  Google Scholar 

  118. Pang X, Zhitomirsky I. Electrodeposition of composite hydroxyapatite—chitosan films. Materials Chemistry and Physics, 2005, 94: 245–251

    Article  CAS  Google Scholar 

  119. Palierse E, Helary C, Krafft J M, et al. Baicalein-modified hydroxyapatite nanoparticles and coatings with antibacterial and antioxidant properties. Materials Science and Engineering C, 2021, 118: 111537

    Article  CAS  Google Scholar 

  120. Luo J, Mamat B, Yue Z, et al. Multi-metal ions doped hydroxyapatite coatings via electrochemical methods for antibacterial and osteogenesis. Colloid and Interface Science Communications, 2021, 43: 100435

    Article  CAS  Google Scholar 

  121. Li K, Chen J, Xue Y, et al. Polymer brush grafted antimicrobial peptide on hydroxyapatite nanorods for highly effective antibacterial performance. Chemical Engineering Journal, 2021, 423: 130133

    Article  CAS  Google Scholar 

  122. Wang Z, Mei L, Liu X, et al. Hierarchically hybrid biocoatings on Ti implants for enhanced antibacterial activity and osteogenesis. Colloids and Surfaces B: Biointerfaces, 2021, 204: 111802

    Article  CAS  Google Scholar 

  123. Ivanova A A, Surmenev R A, Surmeneva M A, et al. Hybrid biocomposite with a tunable antibacterial activity and bioactivity based on RF magnetron sputter deposited coating and silver nanoparticles. Applied Surface Science, 2015, 329: 212–218

    Article  CAS  Google Scholar 

  124. Surmeneva M A, Sharonova A A, Chernousova S, et al. Incorporation of silver nanoparticles into magnetron-sputtered calcium phosphate layers on titanium as an antibacterial coating. Colloids and Surfaces B: Biointerfaces, 2017, 156: 104–113

    Article  CAS  Google Scholar 

  125. Wang M, Zhang H Y, **ang Y Y, et al. How does fluoride enhance hydroxyapatite? A theoretical understanding. Applied Surface Science, 2022, 586: 152753

    Article  CAS  Google Scholar 

  126. Geuli O, Metoki N, Eliaz N, et al. Electrochemically driven hydroxyapatite nanoparticles coating of medical implants. Advanced Functional Materials, 2016, 26: 8003–8010

    Article  CAS  Google Scholar 

  127. Huang D, Lin Q, Zhou Y, et al. Ag nanoparticles incorporated tannic acid/nanoapatite composite coating on Ti implant surfaces for enhancement of antibacterial and antioxidant properties. Surface and Coatings Technology, 2020, 399: 126169

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12272253, 11632013, and 11902214) and the Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering (Grant Nos. 2021SX-AT008 and 2021SX-AT009). The support of the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province (Grant No. 20220006) is also acknowledged with gratitude. Thanks to BioRender for help on some pictures.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **g**g Du, Ruiqiang Hang or Di Huang.

Additional information

Disclosure of potential conflicts of interests

The authors declare that they have no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Z., Li, J., Su, Y. et al. Antibacterial hydroxyapatite coatings on titanium dental implants. Front. Mater. Sci. 17, 230628 (2023). https://doi.org/10.1007/s11706-023-0628-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11706-023-0628-x

Keywords

Navigation