Log in

Honeycomb-like polyaniline for flexible and folding all-solid-state supercapacitors

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Porous polyaniline (PANI) was prepared through an efficient and cost-effective method by polymerization of aniline in the NaCl solution at room temperature. The resulting PANI provided large surface area due to its highly porous structure and the intercrossed nanorod, resulting in good electrochemical performance. The porous PANI electrodes showed a high specific capacitance of 480 F·g−1, 3 times greater than that of PANI without using the NaCl solution. We also make chemically crosslinked hydrogel film for hydrogel polymer electrolyte as well as the flexible supercapacitors (SCs) with PANI. The specific capacitance of the device was 234 F·g−1 at the current density of 1 A·g−1. The energy density of the device could reach as high as 75 W·h·kg−1 while the power density was 0.5 kW·kg−1, indicating that PANI be a promising material in flexible SCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang Y, Tang Z, Liu Z, et al. Toward enhancing wearability and fashion of wearable supercapacitor with modified polyurethane artificial leather electrolyte. Nano-Micro Letters, 2018, 10(3): 38

    Article  Google Scholar 

  2. Pei Z, Hu H, Liang G, et al. Carbon-based flexible and all-solidstate micro-supercapacitors fabricated by inkjet printing with enhanced performance. Nano-Micro Letters, 2017, 9(2): 19

    Article  Google Scholar 

  3. Dominic J, David T, Vanaja A, et al. Supercapacitor performance study of lithium chloride doped polyaniline. Applied Surface Science, 2018, 460: 40–47

    Article  Google Scholar 

  4. Li S, Zhang N, Zhou H, et al. An all-in-one material with excellent electrical double-layer capacitance and pseudocapacitance performances for supercapacitor. Applied Surface Science, 2018, 453: 63–72

    Article  Google Scholar 

  5. Ren X, Fan H, Ma J, et al. Hierarchical Co3O4/PANI hollow nanocages: Synthesis and application for electrode materials of supercapacitors. Applied Surface Science, 2018, 441: 194–203

    Article  Google Scholar 

  6. Peng X, Peng L, Wu C, et al. Two dimensional nanomaterials for flexible supercapacitors. Chemical Society Reviews, 2014, 43(10): 3303–3323

    Article  Google Scholar 

  7. Tobjörk D, Österbacka R. Paper electronics. Advanced Materials, 2011, 23(17): 1935–1961

    Article  Google Scholar 

  8. Huang J, Wang K, Wei Z. Conducting polymer nanowire arrays with enhanced electrochemical performance. Journal of Materials Chemistry, 2010, 20(6): 1117–1121

    Article  Google Scholar 

  9. Lu X, Yu M, Wang G, et al. Flexible solid-state supercapacitors: design, fabrication and applications. Energy & Environmental Science, 2014, 7(7): 2160–2181

    Article  Google Scholar 

  10. Cong H P, Ren X C, Wang P, et al. Flexible graphene-polyaniline composite paper for high-performance supercapacitor. Energy & Environmental Science, 2013, 6(4): 1185–1191

    Article  Google Scholar 

  11. Xu J, Wang K, Zu S Z, et al. Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano, 2010, 4(9): 5019–5026

    Article  Google Scholar 

  12. Bhadra S, Khastgir D, Singha N K, et al. Progress in preparation, processing and applications of polyaniline. Progress in Polymer Science, 2009, 34(8): 783–810

    Article  Google Scholar 

  13. Chiou N R, Epstein A J. Polyaniline nanofibers prepared by dilute polymerization. Advanced Materials, 2005, 17(13): 1679–1683

    Article  Google Scholar 

  14. Li D, Huang J, Kaner R B. Polyaniline nanofibers: a unique polymer nanostructure for versatile applications. Accounts of Chemical Research, 2009, 42(1): 135–145

    Article  Google Scholar 

  15. Wang Y, Shi Y, Pan L, et al. Dopant-enabled supramolecular approach for controlled synthesis of nanostructured conductive polymer hydrogels. Nano Letters, 2015, 15(11): 7736–7741

    Article  Google Scholar 

  16. Pan L, Yu G, Zhai D, et al. Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(24): 9287–9292

    Article  Google Scholar 

  17. Tong Y, Huang W, Luo J, et al. Synthesis and properties of aromatic polyimides derived from 2,2,′3,3′-biphenyltetracarboxylic dianhydride. Journal of Polymer Science Part A: Polymer Chemistry, 1999, 37(10): 1425–1433

    Article  Google Scholar 

  18. Tavandashti N P, Ghorbani M, Shojaei A. Controlled growth of hollow polyaniline structures: From nanotubes to microspheres. Polymer, 2013, 54(21): 5586–5594

    Article  Google Scholar 

  19. Zhang X, Zhu J, Haldolaarachchige N, et al. Synthetic process engineered polyaniline nanostructures with tunable morphology and physical properties. Polymer, 2012, 53(10): 2109–2120

    Article  Google Scholar 

  20. Amarnath C A, Kim J, Kim K, et al. Nanoflakes to nanorods and nanospheres transition of selenious acid doped polyaniline. Polymer, 2008, 49(2): 432–437

    Article  Google Scholar 

  21. Miao Y E, Fan W, Chen D, et al. High-performance supercapacitors based on hollow polyaniline nanofibers by electrospinning. Applied Materials & Interfaces, 2013, 5(10): 4423–4428

    Article  Google Scholar 

  22. Kobayashi S, Uyama H, Kimura S. Enzymatic polymerization. Chemical Reviews, 2001, 101(12): 3793–3818

    Article  Google Scholar 

  23. Gao H, Lian K. Proton-conducting polymer electrolytes and their applications in solid supercapacitors: a review. RSC Advances, 2014, 4(62): 33091–33113

    Article  Google Scholar 

  24. Guiseppi-Elie A. Electroconductive hydrogels: synthesis, characterization and biomedical applications. Biomaterials, 2010, 31(10): 2701–2716

    Article  Google Scholar 

  25. Choudhury N A, Sampath S, Shukla A K. Hydrogel-polymer electrolytes for electrochemical capacitors: an overview. Energy & Environmental Science, 2009, 2: 55–67

    Article  Google Scholar 

  26. Topinka M A, Rowell M W, Goldhaber-Gordon D, et al. Charge transport in interpenetrating networks of semiconducting and metallic carbon nanotubes. Nano Letters, 2009, 9(5): 1866–1871

    Article  Google Scholar 

  27. Yuan L, Lu X H, **ao X, et al. Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure. ACS Nano, 2012, 6(1): 656–661

    Article  Google Scholar 

  28. Lu X, Zeng Y, Yu M, et al. Oxygen-deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors. Advanced Materials, 2014, 26(19): 3148–3155

    Article  Google Scholar 

  29. Son D, Lee J, Qiao S, et al. Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nature Nanotechnology, 2014, 9(5): 397–404

    Article  Google Scholar 

  30. Asturias-Soberanis G E. Oxidative and polymeric acid do** of polyaniline and related Donnan phenomena. General Information, 1992

  31. Chao D, Chen J, Lu X, et al. SEM study of the morphology of high molecular weight polyaniline. Synthetic Metals, 2005, 150(1): 47–51

    Article  Google Scholar 

  32. Cho S, Hwang S H, Kim C, et al. Polyaniline porous counter-electrodes for high performance dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22(24): 12164–12171

    Article  Google Scholar 

  33. Epstein A J, Ginder J M, Zuo F, et al. Insulator-to-metal transition in polyaniline: Effect of protonation in emeraldine. Synthetic Metals, 1987, 21(1–3): 63–70

    Article  Google Scholar 

  34. Germain J, Fréchet J M J, Svec F. Hypercrosslinked polyanilines with nanoporous structure and high surface area: potential adsorbents for hydrogen storage. Journal of Materials Chemistry, 2007, 17(47): 4989–4997

    Article  Google Scholar 

  35. Li G, Zhang Z. Synthesis of dendritic polyaniline nanofibers in a surfactant gel. Macromolecules, 2004, 37(8): 2683–2685

    Article  Google Scholar 

  36. Hassan P A, Sawant S N, Bagkar N C, et al. Polyaniline nanoparticles prepared in rodlike micelles. Langmuir, 2004, 20(12): 4874–4880

    Article  Google Scholar 

  37. Laridjani M, Pouget J P, Scherr E M, et al. Amorphography — the relationship between amorphous and crystalline order. 1. The structural origin of memory effects in polyaniline. Macromolecules, 1992, 25(16): 4106–4113

    Article  Google Scholar 

  38. Liu J, Zhou M, Fan L Z, et al. Porous polyaniline exhibits highly enhanced electrochemical capacitance performance. Electrochimica Acta, 2010, 55(20): 5819–5822

    Article  Google Scholar 

  39. Niziol J, Gondek E, Plucinski K J. Characterization of solution and solid state properties of polyaniline processed from trifluoroacetic acid. Journal of Materials Science: Materials in Electronics, 2012, 23(12): 2194–2201

    Google Scholar 

  40. Anu Prathap M U, Thakur B, Sawant S N, et al. Synthesis of mesostructured polyaniline using mixed surfactants, anionic sodium dodecylsulfate and non-ionic polymers and their applications in H2O2 and glucose sensing. Colloids and Surfaces B: Biointerfaces, 2012, 89: 108–116

    Article  Google Scholar 

  41. Tagowska M, Palys B, Jackowska K. Polyaniline nanotubules — anion effect on conformation and oxidation state of polyaniline studied by Raman spectroscopy. Synthetic Metals, 2004, 142(1–3): 223–229

    Article  Google Scholar 

  42. Wei D, Kvarnström C, Lindfors T, et al. Polyaniline nanotubules obtained in room-temperature ionic liquids. Electrochemistry Communications, 2006, 8(10): 1563–1566

    Article  Google Scholar 

  43. Anbalagan A C, Sawant S N. Brine solution-driven synthesis of porous polyaniline for supercapacitor electrode application. Polymer, 2016, 87: 129–137

    Article  Google Scholar 

  44. Wei Z, Zhang Z, Wan M. Formation mechanism ofself-assembled polyaniline micro/nanotubes. Langmuir, 2002, 18(3): 917–921

    Article  Google Scholar 

  45. Cho S, Shin K H, Jang J. Enhanced electrochemical performance of highly porous supercapacitor electrodes based on solution processed polyaniline thin films. Applied Materials & Interfaces, 2013, 5(18): 9186–9193

    Article  Google Scholar 

  46. Chen J, Wang H, Deng J, et al. Low-crystalline tungsten trioxide anode with superior electrochemical performance for flexible solid-state asymmetry supercapacitor. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(19): 8986–8991

    Article  Google Scholar 

  47. Yang J, Yu C, Liang S, et al. Bridging of ultrathin NiCo2O4 nanosheets and graphene with polyaniline: a theoretical and experimental study. Chemistry of Materials, 2016, 28(16): 5855–5863

    Article  Google Scholar 

  48. Amarnath C A, Chang J H, Kim D, et al. Electrochemical supercapacitor application ofelectroless surface polymerization of polyaniline nanostructures. Materials Chemistry and Physics, 2009, 113(1): 14–17

    Article  Google Scholar 

  49. Devan S, Subramanian V R, White R E. Analytical solution for the impedance of a porous electrode. Journal of the Electrochemical Society, 2004, 151(6): A905–A913

    Article  Google Scholar 

  50. Sumboja A, Wang X, Yan J, et al. Nanoarchitectured current collector for high rate capability of polyaniline based supercapacitor electrode. Electrochimica Acta, 2012, 65: 190–195

    Article  Google Scholar 

  51. Tang Q, Chen M, Wang G, et al. A facile prestrain-stick-release assembly of stretchable supercapacitors based on highly stretchable and sticky hydrogel electrolyte. Journal of Power Sources, 2015, 284: 400–408

    Article  Google Scholar 

  52. Tang Q, Chen M, Wang L, et al. A novel asymmetric supercapacitors based on binder-free carbon fiber paper@nickel cobaltite nanowires and graphene foam electrodes. Journal of Power Sources, 2015, 273: 654–662

    Article  Google Scholar 

  53. Tang Q, Wang W, Wang G. The perfect matching between the low-cost Fe2O3 nanowire anode and the NiO nanoflake cathode significantly enhances the energy density of asymmetric supercapacitors. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(12): 6662–6670

    Article  Google Scholar 

  54. Choudhury N A, Shukla A K, Sampath S, et al. Cross-linked polymer hydrogel electrolytes for electrochemical capacitors. Journal of the Electrochemical Society, 2006, 153(3): A614–A620

    Article  Google Scholar 

  55. Li H, He Y, Pavlinek V, et al. MnO2 nanoflake/polyaniline nanorod hybrid nanostructures on graphene paper for high-performance flexible supercapacitor electrodes. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(33): 17165–17171

    Article  Google Scholar 

  56. Zhao J, Lai H, Lyu Z, et al. Hydrophilic hierarchical nitrogen-doped carbon nanocages for ultrahigh supercapacitive performance. Advanced Materials, 2015, 27(23): 3541–3545

    Article  Google Scholar 

  57. Yu M, Ma Y, Liu J, et al. Polyaniline nanocone arrays synthesized on three-dimensional graphene network by electrodeposition for supercapacitor electrodes. Carbon, 2015, 87: 98–105

    Article  Google Scholar 

  58. Chen L F, Huang Z H, Liang H W, et al. Bacterial-cellulose-derived carbon nanofiber@MnO2 and nitrogen-doped carbon nanofiber electrode materials: an asymmetric supercapacitor with high energy and power density. Advanced Materials, 2013, 25(34): 4746–4752

    Article  Google Scholar 

  59. Oh D Y, Nam Y J, Park K H, et al. Excellent compatibility of solvate ionic liquids with sulfide solid electrolytes: toward favorable ionic contacts in bulk-type all-solid-state lithium-ion batteries. Advanced Energy Materials, 2015, 5(22): 1500865

    Article  Google Scholar 

  60. Li J, Wang Y, Tang J, et al. Direct growth ofmesoporous carbon-coated Ni nanoparticles on carbon fibers for flexible supercapacitors. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(6): 2876–2882

    Article  Google Scholar 

  61. **a X, Zhang Y, Chao D, et al. Tubular TiC fibre nanostructures as supercapacitor electrode material with stable cycling life and wide-temperature performance. Energy & Environmental Science, 2015, 8(5): 1559–1568

    Article  Google Scholar 

  62. Ding J, Wang H, Li Z, et al. Peanut shell hybrid sodium ion capacitor with extreme energy-power rivals lithium ion capacitors. Energy & Environmental Science, 2015, 8(3): 941–955

    Article  Google Scholar 

  63. Wang H, Zhi L, Liu K, et al. Thin-sheet carbon nanomesh with an excellent electrocapacitive performance. Advanced Functional Materials, 2015, 25(34): 5420–5427

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial supports from the National Key Research and Development Program of China (2017YFB0102200; 2017YFB0102900) and the Shanghai Pujiang Program (17PJD016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongbin Zhao or Jiaqiang Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ju, G., Khan, M.A., Zheng, H. et al. Honeycomb-like polyaniline for flexible and folding all-solid-state supercapacitors. Front. Mater. Sci. 13, 133–144 (2019). https://doi.org/10.1007/s11706-019-0459-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-019-0459-y

Keywords

Navigation