Log in

Decoration of CdMoO4 micron polyhedron with Pt nanoparticle and their enhanced photocatalytic performance in N2 fixation and water purification

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

This study aimed to prepare and apply a novel Pt/CdMoO4 composite photocatalyst for photocatalytic N2 fixation and tetracycline degradation. The Pt/CdMoO4 composite was subjected to comprehensive investigation on the morphology, structure, optical properties, and photoelectric chemical properties. The results demonstrate the dispersion of Pt nanoparticles on the CdMoO4 surface. Close contact between CdMoO4 and Pt was observed, resulting in the formation of a heterojunction structure at their contact region. Density functional theory calculation and Mott-Schottky analysis revealed that Pt possesses a higher work function value than CdMoO4, resulting in electron drift from CdMoO4 to Pt and the formation of a Schottky barrier. The presence of this barrier increases the separation efficiency of electron-hole pairs, thereby improving the performance of the Pt/CdMoO4 composite in photocatalysis. When exposed to simulated sunlight, the optimal Pt/CdMoO4 catalyst displayed a photocatalytic nitrogen fixation rate of 443.7 μmol·L−1·g−1·h−1, which is 3.2 times higher than that of pure CdMoO4. In addition, the composite also exhibited excellent performance in tetracycline degradation, with hole and superoxide species identified as the primary reactive species. These findings offer practical insights into designing and synthesizing efficient photocatalysts for photocatalytic nitrogen fixation and antibiotics removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xue X L, Chen R P, Yan C Z, Zhao P Y, Hu Y, Zhang W J, Yang S Y, ** Z. Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: advances, challenges and perspectives. Nano Research, 2019, 12(6): 1229–1249

    Article  CAS  Google Scholar 

  2. Li N, Ma J M, Zhang Y R, Zhang L X, Jiao T F. Recent developments in functional nanocomposite photocatalysts for wastewater treatment: a review. Advanced Sustainable Systems, 2022, 6(7): 2200106

    Article  CAS  Google Scholar 

  3. Schrauzer G N, Guth T D. Photolysis of water and photoreduction of nitrogen on titanium dioxide. Journal of the American Chemical Society, 1977, 99(22): 7189–7193

    Article  CAS  Google Scholar 

  4. Li L X, Chen C, Li Z H, Wang F F, Liu Y, Yi Z G. Controllable synthesis, polar behavior and photoelectric properties of BiOCl microplates. Chinese Journal of Structural Chemistry, 2022, 41(3): 2203077–2203084

    CAS  Google Scholar 

  5. Yan X W, Wang B, Ji M X, Jiang Q, Liu G P, Liu P J, Yin S, Li H M, **a J X. In-situ synthesis of CQDs/BiOBr material via mechanical ball milling with enhanced photocatalytic performances. Chinese Journal of Structural Chemistry, 2022, 41(8): 2208044–2208051

    CAS  Google Scholar 

  6. Zeng L, Zhe F, Wang Y, Zhang Q, Zhao X, Hu X, Wu Y, He Y. Preparation of interstitial carbon doped BiOI for enhanced performance in PNF and methyl orange degradation. Journal of Colloid and Interface Science, 2019, 539: 563–574

    Article  CAS  PubMed  Google Scholar 

  7. Liu Z, Tian J, Yu C L, Fan Q Z, Liu X Q. Solvothermal fabrication of Bi2MoO6 nanocrystals with tunable oxygen vacancies and excellent photocatalytic oxidation performance in quinoline production and antibiotics degradation. Chinese Journal of Catalysis, 2022, 43(2): 472–484

    Article  CAS  Google Scholar 

  8. Li X J, Zhao C R, Wang J F, Zhang J Y, Wu Y, He Y M. Cudoped Bi/Bi2WO6 catalysts for efficient N2 fixation by photocatalysis. Frontiers of Chemical Science and Engineering, 2023, in press doi:10.1007/s11705-023-2312-1

  9. Asadzadeh-Khaneghah S, Habibi-Yangjeh A. g-C3N4/carbon dotbased nanocomposites serve as efficacious photocatalysts for environmental purification and energy generation: a review. Journal of Cleaner Production, 2020, 276: 124319

  10. Zhou L, Li Y F, Zhang Y K, Qiu L W, **ng Y. A 0D/2D Bi4V2O11/g-C3N4 S-scheme heterojunction with rapid interfacial charges migration for photocatalytic antibiotic degradation. Acta Physical-Chimica Sinica, 2022, 38(7): 2112027

    Article  Google Scholar 

  11. Wang J F, Guan L F, Yuan S D, Zhang J Y, Zhao C R, Hu X, Teng B T, Wu Y, He Y M. Greatly boosted photocatalytic N2-to-NH3 conversion by bismuth do** in CdMoO4: band structure engineering and N2 adsorption modification. Separation and Purification Technology, 2023, 314: 123554

    Article  CAS  Google Scholar 

  12. Huang J, Liu H H, Zhong J B, Yang Q, Chen J F, Li J Z, Ma D M, Duan R. Enhanced sunlight-driven photocatalytic performance of Bi-doped CdMoO4 benefited from efficient separation of photogenerated charge pairs. Solid State Sciences, 2018, 80: 147–154

    Article  CAS  Google Scholar 

  13. Bi J H, Zhou Z Y, Chen M Y, Liang S J, He Y H, Zhang Z Z, Wu L. Plasmonic Au/CdMoO4 photocatalyst: influence of surface plasmon resonance for selective photocatalytic oxidation of benzylic alcohol. Applied Surface Science, 2015, 349: 292–298

    Article  CAS  Google Scholar 

  14. Liu Y D, Ren L, Qi X, Wang Y, Liu X J, Zhong J X. One-step hydrothermal fabrication and enhancement of the photocatalytic performance of CdMoO4/CdS hybrid materials. RSC Advances, 2014, 4(17): 8772–8778

    Article  CAS  Google Scholar 

  15. Daturi M, Savary L, Costentin G, Lavalley J C. A correlation between crystal structure and catalytic activity in the solid solutions CdMoxW1-xO4. Catalysis Today, 2000, 61(1–4): 231–236

    Article  CAS  Google Scholar 

  16. Zhou L, Wang W Z, Xu H L, Sun S M. Template-free fabrication of CdMoO4 hollow spheres and their morphology-dependent photocatalytic property. Crystal Growth & Design, 2008, 8(10): 3596–3601

    Article  Google Scholar 

  17. Bumajdad A, Madkour M. Understanding the superior photocatalytic activity of noble metals modified titania under UV and visible light irradiation. Physical Chemistry Chemical Physics, 2014, 16(16): 7146–7158

    Article  CAS  PubMed  Google Scholar 

  18. Adhikari R, Malla S, Gyawali G, Sekino T, Lee S W. Synthesis, characterization and evaluation of the photocatalytic performance of Ag-CdMoO4 solar light driven plasmonic photocatalyst. Materials Research Bulletin, 2013, 48(9): 3367–3373

    Article  CAS  Google Scholar 

  19. Sethi Y A, Kulkarni A K, Khore S K, Panmand R P, Kanade S C, Gosavi S W, Kulkarni M V, Kale B B. Plasmonic Ag decorated CdMoO4 as an efficient photocatalyst for solar hydrogen production. RSC Advances, 2019, 9(49): 28525–28533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. **ng J, Li Y H, Jiang H B, Wang Y, Yang H G. The size and valence state effect of Pt on photocatalytic H2 evolution over platinized TiO2 photocatalyst. International Journal of Hydrogen Energy, 2014, 39(3): 1237–1242

    Article  CAS  Google Scholar 

  21. Yu H G, Huang Y, Gao D D, Wang P, Tang H. Improved H2-generation performance of Pt/CdS photocatalyst by a dualfunction TiO2 mediator for effective electron transfer and hole blocking. Ceramics International, 2019, 45(8): 9807–9813

    Article  CAS  Google Scholar 

  22. Li J, Liu P, Tang Y Z, Huang H L, Cui H Z, Mei D H, Zhong C L. Single-atom Pt-N3 sites on the stable covalent triazine framework nanosheets for photocatalytic N2 fixation. ACS Catalysis, 2020, 10(4): 2431–2442

    Article  CAS  Google Scholar 

  23. Hinrichsen O, Rosowski F, Hornung A, Muhler M, Ertl G. The kinetics of ammonia synthesis over Ru-based catalysts. Journal of Catalysis, 1997, 165(1): 33–44

    Article  CAS  Google Scholar 

  24. Xu J J, Wu M M, Chen M D, Wang Z M. A one-step method for fabrication of CdMoO4-graphene composite photocatalyst and their enhanced photocatalytic properties. Powder Technology, 2015, 281: 167–172

    Article  CAS  Google Scholar 

  25. Daturi M, Busca G, Borel M M, Leclaire A, Piaggio P. Vibrational and XRD study of the system CdWO4-CdMoO4. Journal of Physical Chemistry B, 1997, 101(22): 4358–4369

    Article  CAS  Google Scholar 

  26. Li X J, Chen L, Wang J F, Zhang J Y, Zhao C R, Lin H Y, Wu Y, He Y M. Novel platinum-bismuth alloy loaded KTa0.5Nb0.5O3 composite photocatalyst for effective nitrogen-to-ammonium conversion. Journal of Colloid and Interface Science, 2022, 618: 362–374

    Article  CAS  PubMed  Google Scholar 

  27. Niu F, Chen D, Qin L S, Gao T, Zhang N, Wang S, Chen Z, Wang J Y, Sun X G, Huang Y X. Synthesis of Pt/BiFeO3 heterostructured photocatalysts for highly efficient visible-light photocatalytic performances. Solar Energy Materials and Solar Cells, 2015, 143: 386–396

    Article  CAS  Google Scholar 

  28. Chai B, Yan J T, Fan G Z, Song G S, Wang C L. In situ fabrication of CdMoO4/g-C3N4 composites with improved charge separation and photocatalytic activity under visible light irradiation. Chinese Journal of Catalysis, 2020, 41(1): 170–179

    Article  CAS  Google Scholar 

  29. Raja A, Son N, Kang M. Reduced graphene oxide supported on Gd2MoO6-ZnO nanorod photocatalysts used for the effective reduction of hexavalent chromium. Separation and Purification Technology, 2022, 281: 119872

    Article  CAS  Google Scholar 

  30. Zhang J Y, Yue L, Zeng Z H, Zhao C R, Fang L J, Hu X, Lin H J, Zhao L H, He Y M. Preparation of NaNbO3 microcube with abundant oxygen vacancies and its high photocatalytic N2 fixation activity in the help of Pt nanoparticles. Journal of Colloid and Interface Science, 2023, 636: 480–491

    Article  CAS  PubMed  Google Scholar 

  31. Wang S Y, Zeng B, Li C. Effects of Au nanoparticle size and metal-support interaction on plasmon-induced photocatalytic water oxidation. Chinese Journal of Catalysis, 2018, 39(7): 1219–1227

    Article  CAS  Google Scholar 

  32. Scaife D E. Oxide semiconductors in photoelectrochemical conversion of solar energy. Solar Energy, 1980, 25(1): 41–54

    Article  CAS  Google Scholar 

  33. Wang J F, Zhao C R, Yuan S D, Li X J, Zhang J Y, Hu X, Lin H J, Wu Y, He Y M. One-step fabrication of Cu-doped Bi2MoO6 microflower for enhancing performance in photocatalytic nitrogen fixation. Journal of Colloid and Interface Science, 2023, 638: 427–438

    Article  CAS  PubMed  Google Scholar 

  34. Gu D, Dey S K, Majhi P. Effective work function of Pt, Pd, and Re on atomic layer deposited HfO2. Applied Physics Letters, 2006, 89(8): 082907

    Article  Google Scholar 

  35. Tsukamoto D, Shiro A, Shiraishi Y, Sugano Y, Ichikawa S, Tanaka S, Hirai T. Photocatalytic H2O2 production from ethanol/O2 system using TiO2 loaded with Au-Ag bimetallic alloy nanoparticles. ACS Catalysis, 2012, 2(4): 599–603

    Article  CAS  Google Scholar 

  36. Chen J X, Li Y P, Li J H, Han J, Zhu G J, Ren L. Crystal design of bismuth oxyiodide with highly exposed (110) facets on curved carbon nitride for the photocatalytic degradation of pollutants in wastewater. Frontiers of Chemical Science and Engineering, 2022, 16(7): 1125–1138

    Article  CAS  Google Scholar 

  37. Chen L, Zhang W Q, Wang J F, Li X J, Li Y, Hu X, Zhao L H, Wu Y, He Y M. High piezo/photocatalytic efficiency of Ag/Bi5O7I nanocomposite using mechanical and solar energy for N2 fixation and methyl orange degradation. Green Energy & Environment, 2023, 8(1): 283–295

    Article  CAS  Google Scholar 

  38. Chen P F, Chen L, Ge S F, Zhang W Q, Wu M F, **ng P X, Rotamond T B, Lin H J, Wu Y, He Y M. Microwave heating preparation of phosphorus doped g-C3N4 and its enhanced performance for photocatalytic H2 evolution in the help of Ag3PO4 nanoparticles. International Journal of Hydrogen Energy, 2020, 45(28): 14354–14367

    Article  CAS  Google Scholar 

  39. Zhang L L, Ding L X, Chen G F, Yang X F, Wang H H. Ammonia synthesis under ambient conditions: selective electroreduction of dinitrogen to ammonia on black phosphorus nanosheets. Angewandte Chemie International Edition, 2019, 58(9): 2612–2616

    Article  CAS  PubMed  Google Scholar 

  40. Zhao Y X, Shi R, Bian X N, Zhou C, Zhao Y F, Zhang S, Wu F, Waterhouse G I N, Wu L Z, Tung C H, Zhang T. Ammonia detection methods in photocatalytic and electrocatalytic experiments: How to improve the reliability of NH3 production rates? Advancement of Science, 2019, 6(8): 1802109

    Google Scholar 

  41. Chen L, Wang J F, Li X J, Zhang J Y, Zhao C R, Hu X, Lin H J, Zhao L H, Wu Y, He Y M. Facile preparation of Ag2S/KTa0.5Nb0.5O3 heterojunction for enhanced performance in catalytic nitrogen fixation via photocatalysis and piezophotocatalysis. Green Energy & Environment, 2022, in press, doi:https://doi.org/10.1016/j.gee.2022.03.007

    Google Scholar 

  42. Qiu Y J, Lu J J, Yan Y J, Niu J F, Duan Y N. Bismuth molybdate photocatalyst for the efficient photocatalytic degradation of tetracycline in water under visible-light irradiation. Surfaces and Interfaces, 2022, 31: 102009

    Article  CAS  Google Scholar 

  43. Liang Y, Xu W, Fang J, Liu Z, Chen D, Pan T, Yu Y, Fang Z. Highly dispersed bismuth oxide quantum dots/graphite carbon nitride nanosheets heterojunctions for visible light photocatalytic redox degradation of environmental pollutants. Applied Catalysis B: Environmental, 2021, 295: 120279

    Article  CAS  Google Scholar 

  44. Ye X H, Li Y, Luo P P, He B C, Cao X X, Lu T B. Iron sites on defective BiOBr nanosheets: tailoring the molecular oxygen activation for enhanced photocatalytic organic synthesis. Nano Research, 2022, 15(2): 1509–1516

    Article  CAS  Google Scholar 

  45. Antoniadou M, Arfanis M K, Ibrahim I, Falaras P. Bifunctional g-C3N4/WO3 thin films for photocatalytic water purification. Water (Basel), 2019, 11(12): 2439

    CAS  Google Scholar 

  46. Nandi A, Chatterjee I B. Scavenging of superoxide radical by ascorbic acid. Journal of Biosciences, 1987, 11(1–4): 435–441

    Article  CAS  Google Scholar 

  47. Ruan X W, Huang C X, Cheng H, Zhang Z Q, Cui Y, Li Z Y, **e T F, Ba K K, Zhang H Y, Zhang L, et al. A twin S-scheme artificial photosynthetic system with self-assembled heterojunctions yields superior photocatalytic hydrogen evolution rate. Advanced Materials, 2023, 35(6): 2209141

    Article  CAS  Google Scholar 

  48. Ray S K, Dhakal D, Gyawali G, Joshi B, Koirala A R, Lee S W. Transformation of tetracycline in water during degradation by visible light driven Ag nanoparticles decorated α-NiMoO4 nanorods: mechanism and pathways. Chemical Engineering Journal, 2019, 373: 259–274

    Article  Google Scholar 

  49. Wang H J, Li X, Zhao X X, Li C Y, Song X H, Zhang P, Huo P W, Li X. A review on heterogeneous photocatalysis for environmental remediation: from semiconductors to modification strategies. Chinese Journal of Catalysis, 2022, 43(2): 178–214

    Article  CAS  Google Scholar 

  50. Zhu Y Q, Wang T, Xu T, Li Y X, Wang C Y. Size effect of Pt cocatalyst on photocatalytic efficiency of g-C3N4 for hydrogen evolution. Applied Surface Science, 2019, 464: 36–42

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the National Natural Science Foundation of China (Grant No. 22172144).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiming He.

Ethics declarations

The authors declare that they have no competing interests.

Electronic Supplementary Material

11705_2023_2360_MOESM1_ESM.pdf

Decoration of CdMoO4 micron polyhedron with Pt nanoparticle and their enhanced photocatalytic performance in N2 fixation and water purification

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, X., Wang, J., Yuan, S. et al. Decoration of CdMoO4 micron polyhedron with Pt nanoparticle and their enhanced photocatalytic performance in N2 fixation and water purification. Front. Chem. Sci. Eng. 17, 1949–1961 (2023). https://doi.org/10.1007/s11705-023-2360-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-023-2360-6

Keywords

Navigation