Log in

Hyperbranched magnetic polymer: highly efficient removal of Cr(VI) and application in electroplating wastewater

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

By using a two-step hydrothermal method and trithiocyanuric acid (TTCA), 2,4,6-trihydrazino-1,3,5-triazine (THT), and Fe3O4 as raw materials, a spherical magnetic adsorbent polymer (TTCA/THT@Fe3O4) was synthesized to achieve the efficient removal of Cr(VI) from wastewater. Under optimal adsorption conditions, the maximum adsorption capacity of TTCA/THT@Fe3O4 for Cr(VI) can reach 1340 mg·g−1. Notably, the removal efficiency can approach 98.9%, even at the lower concentration of 20 mg·L−1 Cr(VI). For actual wastewater containing Cr(VI), the Cr(VI) concentration was reduced from 25.8 to 0.4 mg·L−1, a remarkable 20% lower than the current industry discharge standard value. A mechanism for the high adsorption performance of Cr(VI) on TTCA/THT@Fe3O4 was investigated using Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and density functional theory. It can be plausibly attributed to the formation of Cr/N and Cr/S coordination bonds. Additionally, surface electrostatic adsorption, reduction effects, and the spherical polymer structure increase the contact area with Cr(VI), maximizing adsorption. The synergistic effect of adsorption and reduction enhances the adsorption performance of TTCA/THT@Fe3O4 for Cr(VI) and total chromium in water. The resultant polymer has a simple preparation process, excellent adsorption performance, easy magnetic separation, and promising application for actual wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

References

  1. Cui L, Noerpel M R, Scheckel K, Ippolito J A. Wheat straw biochar reduces environmental cadmium bioavailability. Environment International, 2019, 126: 69–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Li S, Xu H, Wang L, Ji L, Li X, Qu Z, Yan N. Dual-functional sites for selective adsorption of mercury and arsenic ions in [SnS4]4−/MgFe-LDH from wastewater. Journal of Hazardous Materials, 2021, 403: 123940

    Article  CAS  PubMed  Google Scholar 

  3. Han X, Zhang Y, Zheng C, Yu X, Li S, Wei W. Enhanced Cr(VI) removal from water using a green synthesized nanocrystalline chlorapatite: physicochemical interpretations and fixed-bed column mathematical model study. Chemosphere, 2021, 264 (Pt 1): 128421

    Article  CAS  PubMed  Google Scholar 

  4. Esrafili L, Firuzabadi F D, Morsali A, Hu M L. Reuse of predesigned dual-functional metal organic frameworks (DF-MOFs) after heavy metal removal. Journal of Hazardous Materials, 2021, 403: 123696

    Article  CAS  PubMed  Google Scholar 

  5. Maitlo H A, Kim K H, Kumar V, Kim S, Park J W. Nanomaterials-based treatment options for chromium in aqueous environments. Environment International, 2019, 130: 104748

    Article  CAS  PubMed  Google Scholar 

  6. Chen M, Ma L Q, Singh S P, Cao R X, Melamed R. Field demonstration of in situ immobilization of soil Pb using P amendments. Advances in Environmental Research, 2003, 81(1): 93–102

    Article  Google Scholar 

  7. Zhang T, Wei S, Waterhouse G I N, Fu L, Liu L, Shi W, Sun J, Ai S. Chromium (VI) adsorption and reduction by humic acid coated nitrogen-doped magnetic porous carbon. Powder Technology, 2020, 360: 55–64

    Article  CAS  Google Scholar 

  8. Shen Z, Zhang J, Hou D, Tsang D C W, Ok Y S, Alessi D S. Synthesis of MgO-coated corncob biochar and its application in lead stabilization in a soil washing residue. Environment International, 2019, 122: 357–362

    Article  CAS  PubMed  Google Scholar 

  9. Abdelwahab N A, Helaly F M. Simulated visible light photocatalytic degradation of Congo red by TiO2 coated magnetic polyacrylamide grafted carboxymethylated chitosan. Journal of Industrial and Engineering Chemistry, 2017, 50: 162–171

    Article  CAS  Google Scholar 

  10. Abdullah N H, Shameli K, Abdullah E, Abdullah L C. Solid matrices for fabrication of magnetic iron oxide nanocomposites: synthesis, properties, and application for the adsorption of heavy metal ions and dyes. Composites Part B: Engineering, 2019, 162: 538–568

    Article  CAS  Google Scholar 

  11. Lin G, Wang S, Zhang L, Hu T, Cheng S, Fu L, **ong C. Enhanced and selective adsorption of Hg2+ to a trace level using trithiocyanuric acid-functionalized corn bract. Environmental Pollution, 2019, 244: 938–946

    Article  CAS  PubMed  Google Scholar 

  12. Fiorilli S, Rivoira L, Calì G, Appendini M, Bruzzoniti M C, Coïsson M, Onida B. Iron oxide inside SBA-15 modified with amino groups as reusable adsorbent for highly efficient removal of glyphosate from water. Applied Surface Science, 2017, 411: 457–465

    Article  CAS  Google Scholar 

  13. Wang Z, Zhang J, Wu Q, Han X, Zhang M, Liu W, Yao X, Feng J, Dong S, Sun J. Magnetic supramolecular polymer: ultrahigh and highly selective Pb(II) capture from aqueous solution and battery wastewater. Chemosphere, 2020, 248: 126042

    Article  CAS  PubMed  Google Scholar 

  14. Li M. C C. The syuthesis of 2,4,6-trihydrazino-1,3,5-triazine. Guangdong Chemical Industry, 2014, 41(274): 13–14 (in Chinese)

    Google Scholar 

  15. Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865–3868

    Article  CAS  PubMed  Google Scholar 

  16. Wang Z, Zhang J, Wen T, Liu X, Wang Y, Yang H, Sun J, Feng J, Dong S, Sun J. Highly effective remediation of Pb(II) and Hg(II) contaminated wastewater and soil by flower-like magnetic MoS2 nanohybrid. Science of the Total Environment, 2020, 699: 134341

    Article  CAS  PubMed  Google Scholar 

  17. Anito D A, Wang T X, Liu Z W, Ding X, Han B H. Iminodiacetic acid-functionalized porous polymer for removal of toxic metal ions from water. Journal of Hazardous Materials, 2020, 400: 123188

    Article  CAS  PubMed  Google Scholar 

  18. Huang D, Wu J, Wang L, Liu X, Meng J, Tang X, Tang C, Xu J. Novel insight into adsorption and co-adsorption of heavy metal ions and an organic pollutant by magnetic graphene nanomaterials in water. Chemical Engineering Journal, 2019, 358: 1399–1409

    Article  CAS  Google Scholar 

  19. Li X, Bian C, Meng X, **ao F S. Design and synthesis of an efficient nanoporous adsorbent for Hg2+ and Pb2+ ions in water. Journal of Materials Chemistry A, 2016, 416(16): 5999–6005

    Article  Google Scholar 

  20. Fu W, Huang Z. One-pot synthesis of a two-dimensional porous Fe3O4/Poly(C3N3S3) network nanocomposite for the selective removal of Pb(II) and Hg(II) from synthetic wastewater. ACS Sustainable Chemistry & Engineering, 2018, 611(11): 14785–14794

    Article  Google Scholar 

  21. Jun Y S, Lee E Z, Wang X, Hong W H, Stucky G D, Thomas A. From melamine-cyanuric acid supramolecular aggregates to carbon nitride hollow spheres. Advanced Functional Materials, 2013, 2329(29): 3661–3667

    Article  Google Scholar 

  22. Zhu M, Zhang W, Li Y, Gai L, Zhou J, Ma W. Multishell structured magnetic nanocomposites carrying a copolymer of pyrrole-thiophene for highly selective Au(III) recovery. Journal of Materials Chemistry A, 2016, 448(48): 19060–19069

    Article  Google Scholar 

  23. Zhu S, Ho S H, Huang X, Wang D, Yang F, Wang L, Wang C, Cao X, Ma F. Magnetic nanoscale zerovalent iron assisted biochar: interfacial chemical behaviors and heavy metals remediation performance. ACS Sustainable Chemistry & Engineering, 2017, 511(11): 9673–9682

    Article  Google Scholar 

  24. Zhao F, Tang W Z, Zhao D, Meng Y, Yin D, Sillanpää M. Adsorption kinetics, isotherms and mechanisms of Cd(II), Pb(II), Co(II) and Ni(II) by a modified magnetic polyacrylamide microcomposite adsorbent. Journal of Water Process Engineering, 2014, 4: 47–57

    Article  Google Scholar 

  25. Yang Z K, Lin L, Liu Y N, Zhou X, Yuan C Z, Xu A W. Supramolecular polymers-derived nonmetal N, S-codoped carbon nanosheets for efficient oxygen reduction reaction. RSC Advances, 2016, 658(58): 52937–52944

    Article  Google Scholar 

  26. Feng L L, Zou Y, Li C, Gao S, Zhou L J, Sun Q, Fan M, Wang H, Wang D, Li G D, Zou X. Nanoporous sulfur-doped graphitic carbon nitride microrods: a durable catalyst for visible-light-driven H2 evolution. International Journal of Hydrogen Energy, 2014, 3928(28): 15373–15379

    Article  Google Scholar 

  27. Ko D, Mines P D, Jakobsen M H, Yavuz C T, Hansen H C B, Andersen H R. Disulfide polymer grafted porous carbon composites for heavy metal removal from stormwater runoff. Chemical Engineering Journal, 2018, 348: 685–692

    Article  CAS  Google Scholar 

  28. Zhu S, Wang S, Yang X, Tufail S, Chen C, Wang X, Shang J. Green sustainable and highly efficient hematite nanoparticles modified biochar-clay granular composite for Cr(VI) removal and related mechanism. Journal of Cleaner Production, 2020, 276: 123009

    Article  CAS  Google Scholar 

  29. Zhang Y, Xu Q, Zhang S, Liu J, Zhou J, Xu H, **ao H, Li J. Preparation of thiol-modified Fe3O4@SiO2 nanoparticles and their application for gold recovery from dilute solution. Separation and Purification Technology, 2013, 116: 391–397

    Article  CAS  Google Scholar 

  30. Yao T, Guo S, Zeng C, Wang C, Zhang L. Investigation on efficient adsorption of cationic dyes on porous magnetic polyacrylamide microspheres. Journal of Hazardous Materials, 2015, 292: 90–97

    Article  CAS  PubMed  Google Scholar 

  31. Zheng X, Zheng H, **ong Z, Zhao R, Liu Y, Zhao C, Zheng C. Novel anionic polyacrylamide-modify-chitosan magnetic composite nanoparticles with excellent adsorption capacity for cationic dyes and pH-independent adsorption capability for metal ions. Chemical Engineering Journal, 2020, 392: 123706

    Article  CAS  Google Scholar 

  32. Wei Z, Zhang Y, Ma X, Wang W. Insight into the high-efficiency adsorption of pyrene by Schiff base porous polymers: modelling and mechanism. Polymer, 2021, 220: 123576

    Article  CAS  Google Scholar 

  33. Wang Z, Wu Q, Zhang J, Zhang H, Feng J, Dong S, Sun J. In situ polymerization of magnetic graphene oxide-diaminopyridine composite for the effective adsorption of Pb(II) and application in battery industry wastewater treatment. Environmental Science and Pollution Research International, 2019, 2632(32): 33427–33439

    Article  Google Scholar 

  34. Zhang W, Lan Y, Ma M, Chai S, Zuo Q, Kim K H, Gao Y. A novel chitosan-vanadium-titanium-magnetite composite as a superior adsorbent for organic dyes in wastewater. Environment International, 2020, 142: 105798

    Article  CAS  PubMed  Google Scholar 

  35. Cai W, Zhu F, Liang H, Jiang Y, Tu W, Cai Z, Wu J, Zhou J. Preparation of thiourea-modified magnetic chitosan composite with efficient removal efficiency for Cr(VI). Chemical Engineering Research & Design, 2019, 144: 150–158

    Article  CAS  Google Scholar 

  36. Othmani A, Magdouli S, Senthil Kumar P, Kapoor A, Chellam P V, Gokkus O. Agricultural waste materials for adsorptive removal of phenols, chromium(VI) and cadmium(II) from wastewater: a review. Environmental Research, 2022, 204 (Pt A): 111916

    Article  CAS  PubMed  Google Scholar 

  37. Pavithra S, Thandapani G, Sugashini S, Sudha P N, Alkhamis H H, Alrefaei A F, Almutairi M H. Batch adsorption studies on surface tailored chitosan/orange peel hydrogel composite for the removal of Cr(VI) and Cu(II) ions from synthetic wastewater. Chemosphere, 2021, 271: 129415

    Article  CAS  PubMed  Google Scholar 

  38. Naicker C, Nombona N, van Zyl W E. Fabrication of novel magnetic chitosan/graphene-oxide/metal oxide nanocomposite beads for Cr(VI) adsorption. Chemical Papers, 2019, 74(2): 529–541

    Article  Google Scholar 

  39. Wang Z, Li T T, Peng H K, Ren H T, Lou C W, Lin J H. Low-cost hydrogel adsorbent enhanced by trihydroxy melamine and beta-cyclodextrin for the removal of Pb(II) and Ni(II) in water. Journal of Hazardous Materials, 2021, 411: 125029

    Article  CAS  PubMed  Google Scholar 

  40. Yang H R, Li S S, Yang C, An Q D, Zhai S R, **ao Z Y. Bi-layered hollow amphoteric composites: rational construction and ultra-efficient sorption performance for anionic Cr(VI) and cationic Cu(II) ions. Journal of Colloid and Interface Science, 2022, 607: 556–567

    Article  CAS  PubMed  Google Scholar 

  41. Li R, An Q D, **ao Z Y, Zhai B, Zhai S R, Shi Z. Preparation of PEI/CS aerogel beads with a high density of reactive sites for efficient Cr(VI) sorption: batch and column studies. RSC Advances, 2017, 7(64): 40227–40236

    Article  CAS  Google Scholar 

  42. Guo D M, An Q D, **ao Z Y, Zhai S R, Yang D J. Efficient removal of Pb(II), Cr(VI) and organic dyes by polydopamine modified chitosan aerogels. Carbohydrate Polymers, 2018, 202: 306–314

    Article  CAS  PubMed  Google Scholar 

  43. Yan Y Z, An Q D, **ao Z Y, Zheng W, Zhai S G. Flexible core-shell/bead-like alginate@PEI with exceptional adsorption capacity, recycling performance toward batch and column sorption of Cr(VI). Chemical Engineering Journal, 2017, 313: 475–486

    Article  CAS  Google Scholar 

  44. Yan Y Z, An Q D, **ao Z Y, Zhai S R, Zhai B, Shi Z. Interior multi-cavity/surface engineering of alginate hydrogels with polyethylenimine for highly efficient chromium removal in batch and continuous aqueous systems. Journal of Materials Chemistry A, 2017, 5(32): 17073–17087

    Article  CAS  Google Scholar 

  45. Yang H R, Yang C, Li S S, Shan X C, Song G L, An Q D, Zhai S R, **ao Z Y. Site-imprinted hollow composites with integrated functions for ultra-efficient capture of hexavalent chromium from water. Separation and Purification Technology, 2022, 284: 120240

    Article  CAS  Google Scholar 

  46. Yang H R, Li S S, Shan X C, Yang C, An Q D, Zhai S R, **ao Z Y. Hollow polyethyleneimine/carboxymethyl cellulose beads with abundant and accessible sorption sites for ultra-efficient chromium (VI) and phosphate removal. Separation and Purification Technology, 2022, 278: 119607

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 22076039 and 22176051), Science Foundation for Outstanding Youth of Henan Province (Grant No. 222300420054), and Excellent Science and Technology Innovation Team of Henan Normal University (Grant No. 2021TD03). The calculations were conducted on resources provided by the High Performance Computing Center of Henan Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhui Sun.

Ethics declarations

There are no conflicts to declare.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, N., Wu, Q., **, L. et al. Hyperbranched magnetic polymer: highly efficient removal of Cr(VI) and application in electroplating wastewater. Front. Chem. Sci. Eng. 17, 1568–1580 (2023). https://doi.org/10.1007/s11705-023-2303-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-023-2303-2

Keywords

Navigation