Log in

Efficient CO2 adsorption and mechanism on nitrogen-doped porous carbons

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

In this work, nitrogen-doped porous carbons (NACs) were fabricated as an adsorbent by urea modification and KOH activation. The CO2 adsorption mechanism for the NACs was then explored. The NACs are found to present a large specific surface area (1920.72–3078.99 m2·g−1) and high micropore percentage (61.60%–76.23%). Under a pressure of 1 bar, sample NAC-650-650 shows the highest CO2 adsorption capacity up to 5.96 and 3.92 mmol·g−1 at 0 and 25 °C, respectively. In addition, the CO2/N2 selectivity of NAC-650-650 is 79.93, much higher than the value of 49.77 obtained for the nonnitrogen-doped carbon AC-650-650. The CO2 adsorption capacity of the NAC-650-650 sample maintains over 97% after ten cycles. Analysis of the results show that the CO2 capacity of the NACs has a linear correlation (R2 = 0.9633) with the cumulative pore volume for a pore size less than 1.02 nm. The presence of nitrogen and oxygen enhances the CO2/N2 selectivity, and pyrrole-N and hydroxy groups contribute more to the CO2 adsorption. In situ Fourier transform infrared spectra analysis indicates that CO2 is adsorbed onto the NACs as a gas. Furthermore, the physical adsorption mechanism is confirmed by adsorption kinetic models and the isosteric heat, and it is found to be controlled by CO2 diffusion. The CO2 adsorption kinetics for NACs at room temperature and in pure CO2 is in accordance with the pseudo-first-order model and Avramís fractional-order kinetic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jian B H, Shao W W, Yong L, Zong C Z, **n Y W. Debates on the causes of global warming. Advances in Climate Change Research, 2012, 3(1): 38–44

    Google Scholar 

  2. Oktyabrskiy V P. A new opinion of the greenhouse effect. St. Petersburg Polytechnical University Journal. Physics and Mathematics, 2016, 2(2): 124–126

    Google Scholar 

  3. Akitt J W. Some observations on the greenhouse effect at the Earth’s surface. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 2018, 188: 127–134

    CAS  Google Scholar 

  4. Roussanaly S, Vitvarova M, Anantharaman R, Berstad D, Hagen B, Jakobsen J, Novotny V, Skaugen G. Techno-economic comparison of three technologies for precombustion CO2 capture from a lignite-fired IGCC. Frontiers of Chemical Science and Engineering, 2020, 14(3): 436–452

    CAS  Google Scholar 

  5. Cometto C, Kuriki R, Chen L J, Maeda K, Lau T C, Ishitani O, Robert M. A carbon Nitride/Fe quaterpyridine catalytic system for photostimulated CO2-to-CO conversion with visible light. Journal of the American Chemical Society, 2018, 140(24): 7437–7440

    CAS  PubMed  Google Scholar 

  6. Peng H, Lu J, Wu C X, Yang Z X, Chen H, Song W J, Li P Q, Yin H Z. Co-doped MoS2 NPs with matched energy band and low overpotential high efficiently convert CO2 to methanol. Applied Surface Science, 2015, 353: 1003–1012

    CAS  Google Scholar 

  7. Wang S M, Guan Y, Lu L, Shi Z, Yan S C, Zou Z G. Effective separation and transfer of carriers into the redox sites on Ta3N5/Bi photocatalyst for promoting conversion of CO2 into CH4. Applied Catalysis B: Environmental, 2018, 224: 10–16

    CAS  Google Scholar 

  8. Ban Y J, Zhao M, Yang W S. Metal-organic framework-based CO2 capture: from precise material design to high-efficiency membranes. Frontiers of Chemical Science and Engineering, 2020, 14(2): 188–215

    CAS  Google Scholar 

  9. Li W, Li S. CO2 adsorption performance of functionalized metal-organic frameworks of varying topologies by molecular simulations. Chemical Engineering Science, 2018, 189: 65–74

    CAS  Google Scholar 

  10. Wang X, Guo Q J, Zhao J, Chen L L. Mixed amine-modified MCM-41 sorbents for CO2 capture. International Journal of Greenhouse Gas Control, 2015, 37: 90–98

    Google Scholar 

  11. Kongnoo A, Tontisirin S, Worathanakul P, Phalakornkule C. Surface characteristics and CO2 adsorption capacities of acid-activated zeolite 13X prepared from palm oil mill fly ash. Fuel, 2017, 193: 385–394

    CAS  Google Scholar 

  12. Kishor R, Ghoshal A K. Amine-modified mesoporous silica for CO2 adsorption: the role of structural parameters. Industrial & Engineering Chemistry Research, 2017, 56(20): 6078–6087

    CAS  Google Scholar 

  13. Guo X Z, Ding L, Kanamori K, Nakanishi K, Yang H. Functionalization of hierarchically porous silica monoliths with polyethyleneimine (PEI) for CO2 adsorption. Microporous and Mesoporous Materials, 2017, 245: 51–57

    CAS  Google Scholar 

  14. Wang Y X, Hu X D, Hao J, Ma R, Guo Q J, Gao H F, Bai H C. Nitrogen and oxygen codoped porous carbon with superior CO2 adsorption performance: a combined experimental and DFT calculation study. Industrial & Engineering Chemistry Research, 2019, 58(29): 13390–13400

    CAS  Google Scholar 

  15. Hu X, Radosz M, Cychosz K A, Thommes M. CO2-filling capacity and selectivity of carbon nanopores: synthesis, texture, and pore-size distribution from quenched-solid density functional theory (QSDFT). Environmental Science & Technology, 2011, 45(16): 7068–7074

    CAS  Google Scholar 

  16. Mehrvarz E, Ghoreyshi A A, Jahanshahi M. Surface modification of broom sorghum-based activated carbon via functionalization with triethylenetetramine and urea for CO2 capture enhancement. Frontiers of Chemical Science and Engineering, 2017, 11(2): 252–265

    CAS  Google Scholar 

  17. Wang X, Guo Q J. CO2 adsorption behavior of activated coal char modified with tetraethylenepentamine. Energy & Fuels, 2016, 30(4): 3281–3288

    CAS  Google Scholar 

  18. Gao S, Ge L, Rufford T E, Zhu Z H. The preparation of activated carbon discs from tar pitch and coal powder for adsorption of CO2, CH4 and N2. Microporous and Mesoporous Materials, 2017, 238: 19–26

    CAS  Google Scholar 

  19. Ge X Y, Wu Z S, Wu Z L, Yan Y J, Cravotto G, Ye B C. Enhanced PAHs adsorption using iron-modified coal-based activated carbon via microwave radiation. Journal of the Taiwan Institute of Chemical Engineers, 2016, 64: 235–243

    CAS  Google Scholar 

  20. Wei X H, Wu Z L, Du C F, Wu Z S, Ye B C, Cravotto G. Enhanced adsorption of atrazine on a coal-based activated carbon modified with sodium dodecyl benzene sulfonate under microwave heating. Journal of the Taiwan Institute of Chemical Engineers, 2017, 77: 257–262

    CAS  Google Scholar 

  21. Chang G Z, **e J J, Huang Y Q, Liu H C, Yin X L, Wu C Z. Gasification reactivity and pore structure development: effect of intermittent addition of steam on increasing reactivity of PKS biochar with CO2. Energy & Fuels, 2017, 31(3): 2887–2895

    CAS  Google Scholar 

  22. Wang X J, Yuan B Q, Zhou X, **a Q B, Li Y W, An D L, Li Z. Novel glucose-based adsorbents (Glc-Cs) with high CO2 capacity and excellent CO2/CH4/N2 adsorption selectivity. Chemical Engineering Journal, 2017, 327: 51–59

    CAS  Google Scholar 

  23. Nowrouzi M, Younesi H, Bahramifar N. Superior CO2 capture performance on biomass-derived carbon/metal oxides nanocomposites from Persian ironwood by H3PO4 activation. Fuel, 2018, 223: 99–114

    CAS  Google Scholar 

  24. Tiwari D, Bhunia H, Bajpai P K. Adsorption of CO2 on KOH activated, N-enriched carbon derived from urea formaldehyde resin: kinetics, isotherm and thermodynamic studies. Applied Surface Science, 2018, 439: 760–771

    CAS  Google Scholar 

  25. Liu F Q, Wang L L, Li G H, Li W, Li C Q. Hierarchically structured graphene coupled microporous organic polymers for superior CO2 capture. ACS Applied Materials & Interfaces, 2017, 9(39): 33997–34004

    CAS  Google Scholar 

  26. Chang G Z, Wu W, Shi P C, Ma J J, Guo Q J. A promising composite bimetallic catalyst for producing CH4-rich syngas from bitumite one-step gasification. Energy Conversion and Management, 2020, 205: 112408

    CAS  Google Scholar 

  27. Chen J, Yang J, Hu G S, Hu X, Li Z M, Shen S W, Radosz M, Fan M H. Enhanced CO2 capture capacity of nitrogen-doped biomass-derived porous carbons. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 1439–1445

    CAS  Google Scholar 

  28. Yue L M, **a Q Z, Wang L W, Wang L L, DaCosta H, Yang J, Hu X. CO2 adsorption at nitrogen-doped carbons prepared by K2CO3 activation of urea-modified coconut shell. Journal of Colloid and Interface Science, 2018, 511: 259–267

    CAS  PubMed  Google Scholar 

  29. Chiang Y C, Juang R S. Surface modifications of carbonaceous materials for carbon dioxide adsorption: a review. Journal of the Taiwan Institute of Chemical Engineers, 2017, 71: 214–234

    CAS  Google Scholar 

  30. Peyravi M. Synthesis of nitrogen doped activated carbon/polyani-line material for CO2 adsorption. Polymers for Advanced Technologies, 2018, 29(1): 319–328

    CAS  Google Scholar 

  31. Wang M, Fan X Q, Zhang L X, Liu J H, Wang B Z, Cheng R L, Li M L, Tian J J, Shi J L. Probing the role of O-containing groups in CO2 adsorption of N-doped porous activated carbon. Nanoscale, 2017, 9(44): 17593–17600

    CAS  PubMed  Google Scholar 

  32. Tian Z H, Huang J J, Zhang X, Shao G L, He Q Y, Cao S K, Yuan S G. Ultra-microporous N-doped carbon from polycondensed framework precursor for CO2 adsorption. Microporous and Mesoporous Materials, 2018, 257: 19–26

    CAS  Google Scholar 

  33. Shao L S, Liu M Q, Huang J H, Liu Y N. CO2 capture by nitrogen-doped porous carbons derived from nitrogen-containing hyper-cross-linked polymers. Journal of Colloid and Interface Science, 2018, 513: 304–313

    CAS  PubMed  Google Scholar 

  34. Serafin J, Narkiewicz U, Morawski A W, Wróbel R J, Michalkiewicz B. Highly microporous activated carbons from biomass for CO2 capture and effective micropores at different conditions. Journal of CO2 Utilization, 2017, 18: 73–79

    CAS  Google Scholar 

  35. Singh J, Bhunia H, Basu S. CO2 adsorption on oxygen enriched porous carbon monoliths: kinetics, isotherm and thermodynamic studies. Journal of Industrial and Engineering Chemistry, 2018, 60: 321–332

    CAS  Google Scholar 

  36. Simonin J P. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chemical Engineering Journal, 2016, 300: 254–263

    CAS  Google Scholar 

  37. Tiwari D, Bhunia H, Bajpai P K. Development of chemically activated N-enriched carbon adsorbents from urea-formaldehyde resin for CO2 adsorption: kinetics, isotherm, and thermodynamics. Journal of Environmental Management, 2018, 218: 579–592

    CAS  PubMed  Google Scholar 

  38. Tiwari D, Goel C, Bhunia H, Bajpai P K. Melamine-formaldehyde derived porous carbons for adsorption of CO2 capture. Journal of Environmental Management, 2017, 197: 415–427

    CAS  PubMed  Google Scholar 

  39. Liu M Q, Shao L S, Huang J H, Liu Y N. O-containing hyper-cross-linked polymers and porous carbons for CO2 capture. Microporous and Mesoporous Materials, 2018, 264: 104–111

    CAS  Google Scholar 

  40. Rashidi N A, Yusup S. An overview of activated carbons utilization for the post-combustion carbon dioxide capture. Journal of CO2 Utilization, 2016, 13: 1–16

    CAS  Google Scholar 

  41. Parshetti G K, Chowdhury S, Balasubramanian R. Biomass derived low-cost microporous adsorbents for efficient CO2 capture. Fuel, 2015, 148: 246–254

    CAS  Google Scholar 

  42. Alhamed Y A, Rather S U, El-Shazly A H, Zaman S F, Daous M A, Al-Zahrani A A. Preparation of activated carbon from fly ash and its application for CO2 capture. Korean Journal of Chemical Engineering, 2015, 32(4): 723–730

    CAS  Google Scholar 

  43. Liu D D, Gao J H, Cao Q X, Wu S H, Qin Y K. Improvement of activated carbon from Jixi bituminous coal by air preoxidation. Energy & Fuels, 2017, 31(2): 1406–1415

    CAS  Google Scholar 

  44. Yue L, Rao L, Wang L, An L, Hou C, Ma C, DaCosta H, Hu X. Efficient CO2 adsorption on nitrogen-doped porous carbons derived from D-glucose. Energy & Fuels, 2018, 32(6): 6955–6963

    CAS  Google Scholar 

  45. Sánchez-Sánchez Á, Suárez-García F, Martínez-Alonso A, Tascón J M D. Influence of porous texture and surface chemistry on the CO2 adsorption capacity of porous carbons: acidic and basic site interactions. ACS Applied Materials & Interfaces, 2014, 6(23): 21237–21247

    Google Scholar 

  46. Yaumi A L, Bakar M Z A, Hameed B H. Reusable nitrogen-doped mesoporous carbon adsorbent for carbon dioxide adsorption in fixed-bed. Energy, 2017, 138: 776–784

    CAS  Google Scholar 

  47. Kudin K N, Ozbas B, Schniepp H C, Prud’Homme R K, Aksay I A, Car R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Letters, 2008, 8(1): 36–41

    CAS  PubMed  Google Scholar 

  48. Shao L S, Wang S Q, Liu M Q, Huang J H, Liu Y N. Triazine-based hyper-cross-linked polymers derived porous carbons for CO2 capture. Chemical Engineering Journal, 2018, 339: 509–518

    CAS  Google Scholar 

  49. Puthiaraj P, Ahn W S. Facile synthesis of microporous carbonaceous materials derived from a covalent triazine polymer for CO2 capture. Journal of Energy Chemistry, 2017, 26(5): 965–971

    Google Scholar 

  50. Zhang G J, Zhao P Y, Hao L X, Xu Y. Amine-modified SBA-15(P): a promising adsorbent for CO2 capture. Journal of CO2 Utilization, 2018, 24: 22–33

    CAS  Google Scholar 

Download references

Acknowledgements

This work is funded by the National Key Research and Development Program of China (Grant No. 2018YFB0605401); the National Natural Science Foundation of China (Grant No. 21868025); the National First-rate Discipline Construction Project of Ningxia (No. NXYLXK2017A04); the Key Research and Development Program of Ningxia Province, China (No. 2018BCE01002); and Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (Grant No. 2020-KF-39).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingjie Guo.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Hu, X., Guo, T. et al. Efficient CO2 adsorption and mechanism on nitrogen-doped porous carbons. Front. Chem. Sci. Eng. 15, 493–504 (2021). https://doi.org/10.1007/s11705-020-1967-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-020-1967-0

Keywords

Navigation