Log in

Selective catalytic reduction of NOx with ethanol and other C1–4 oxygenates over Ag/Al2O3 catalysts: A review

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Research results regarding selective catalytic reduction (SCR) of NOx with ethanol and other C1-4 oxygenates as reductants over silver-alumina catalysts are summarized. The aspects of the process mechanism, nature of active sites, role of alumina and silver (especially in the formation of bifunctional active sites), effects of reductants and reaction conditions are discussed. It has been determined that key stages of the process include formation of reactive enolic species, their interaction with NOx and formation of nitroorganic compounds which transform to NCOads species and further to N2. The results obtained over various silver-alumina catalysts demonstrate the perspectives of their application for reducing the level of nitrogen oxides in engine emissions, including in the presence of water vapor and sulfur oxides. Ways to improve the catalysts for the SCR of NOx with C1-4 oxygenates are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lammel G, Graßl H. Greenhouse effect of NOx. Environmental Science and Pollution Research International, 1995, 2(1): 40–45

    Article  PubMed  CAS  Google Scholar 

  2. Chossière G P, Malina R, Ashok A, Dedoussi I C, Eastham S D, Speth R L, Barrett S R H. Public health impacts of excess NOx emissions from Volkswagen diesel passenger vehicles in Germany. Environmental Research Letters, 2017, 12(3): 034014

    Article  CAS  Google Scholar 

  3. Boningari T, Smirniotis P G. Impact of nitrogen oxides on the environment and human health: Mn-based materials for the NOx abatement. Current Opinion in Chemical Engineering, 2016, 13: 133–141

    Article  Google Scholar 

  4. Skalska K, Miller J S, Ledakowicz S. Trends in NOx abatement: A review. Science of the Total Environment, 2010, 408(19): 3976–3989

    Article  PubMed  CAS  Google Scholar 

  5. Granger P, Parvulescu V I. Catalytic NOx abatement systems for mobile sources: From three-way to lean burn after-treatment technologies. Chemical Reviews, 2011, 111(5): 3155–3207

    Article  PubMed  CAS  Google Scholar 

  6. Pârvulescu V I, Grange P, Delmon B. Catalytic removal of NO. Catalysis Today, 1998, 46(4): 233–316

    Article  Google Scholar 

  7. Roy S, Hegde M S, Madras G. Catalysis for NOx abatement. Applied Energy, 2009, 86(11): 2283–2297

    Article  CAS  Google Scholar 

  8. Piumetti M, Bensaid S, Fino D, Russo N. Catalysis in diesel engine NOx after treatment: A review. Catalysis. Structure & Reactivity, 2015, 1(4): 155–173

    Article  Google Scholar 

  9. Orlik S N, Mironyuk T V, Boichuk T M. Structural functional design of catalysts for conversion of nitrogen (I, II) oxides. Theoretical and Experimental Chemistry, 2012, 48(2): 73–97

    Article  CAS  Google Scholar 

  10. Chen H Y, Chang H L R. Development of low temperature three-way catalysts for future fuel efficient vehicles. Johnson Matthey Technology Review, 2015, 59(1): 64–67

    Article  CAS  Google Scholar 

  11. Wang J, Chen H, Hu Z, Yao M, Li Y. A review on the Pd-based three-way catalyst. Catalysis Reviews. Science and Engineering, 2015, 57(1): 79–144

    Article  CAS  Google Scholar 

  12. Burch R, Breen J P, Meunier F C. A review of the selective reduction of NOx, with hydrocarbonds under lean-burn conditions with non-zeolitic oxide and platinum group metal analysis. Applied Catalysis B: Environmental, 2002, 39(4): 283–303

    Article  CAS  Google Scholar 

  13. Li J, Chang H, Ma L, Hao J, Yang R T. Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts—a review. Catalysis Today, 2011, 175(1): 147–156

    Article  CAS  Google Scholar 

  14. Guan B, Zhan R, Lin H, Huang Z. Review of state of the art technologies of selective catalytic reduction of NOx from diesel engine exhaust. Applied Thermal Engineering, 2014, 66(1–2): 395–414

    Article  CAS  Google Scholar 

  15. Li J, Chang H, Ma L, Hao J, Yang R T. Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts—a review. Catalysis Today, 2011, 175(1): 147–156

    Article  CAS  Google Scholar 

  16. Brandenberger S, Kröcher O, Tissler A, Althoff R. The state of the art in selective catalytic reduction of NOx by ammonia using metal-exchanged zeolite catalysts. Catalysis Reviews. Science and Engineering, 2008, 50(4): 492–531

    Article  CAS  Google Scholar 

  17. Lehtoranta K, Vesala H, Koponen P, Korhonen S. Selective catalytic reduction operation with heavy fuel oil: NOx, NH3, and particle emissions. Environmental Science & Technology, 2015, 49(7): 4735–4741

    Article  CAS  Google Scholar 

  18. Yim S D, Kim S J, Baik J H, Nam I, Mok Y S, Lee J H, Cho B K, Oh S H. Decomposition of urea into NH3 for the SCR process. Industrial & Engineering Chemistry Research, 2004, 43(16): 4856–4863

    Article  CAS  Google Scholar 

  19. Gao F, Tang X, Yi H, Zhao S, Li C, Li J, Shi Y, Meng X. A review on selective catalytic reduction of NOx by NH3 over Mn-based catalysts at low temperatures: Catalysts, mechanisms, kinetics and DFT calculations. Catalysts, 2017, 7(7): 199

    Article  CAS  Google Scholar 

  20. Roy S, Baiker A. NOx storage-reduction catalysis from mechanism and materials properties to storage-reduction performance. Chemical Reviews, 2009, 109(9): 4054–4091

    Article  PubMed  CAS  Google Scholar 

  21. Liu G, Gao P X. A review of NOx storage/reduction catalysts: Mechanism, materials and degradation studies. Catalysis Science & Technology, 2011, 1(4): 552–568

    Article  CAS  Google Scholar 

  22. Mrad R, Aissat A, Cousin R, Courcot D, Siffert S. Catalysts for NOx selective catalytic reduction by hydrocarbons (HC-SCR). Applied Catalysis A, General, 2015, 504: 542–548

    Article  CAS  Google Scholar 

  23. Kannisto H, Ingelsten H H, Skoglundh M. Ag-Al2O3 catalysts for lean NOx reduction-influence of preparation method and reductant. Journal of Molecular Catalysis A Chemical, 2009, 302(1–2): 86–96

    Article  CAS  Google Scholar 

  24. Popovych N O, Soloviev S O, Orlyk S M. Selective reduction of nitrogen oxides (NOx) with oxygenates and hydrocarbons over bifunctional silver-alumina catalysts: A review. Theoretical and Experimental Chemistry, 2016, 52(3): 133–151

    Article  CAS  Google Scholar 

  25. Ström L, Carlsson P A, Skoglundh M, Härelind H. Hydrogen-assisted SCR of NOx over alumina-supported silver and indium catalysts using C2-hydrocarbons and oxygenates. Applied Catalysis B: Environmental, 2016, 181: 403–412

    Article  CAS  Google Scholar 

  26. Härelind H, Gunnarsson F, Vaghefi S M S, Skoglundh M, Carlsson P A. Influence of the carbon-carbon bond order and silver loading on the formation of surface species and gas phase oxidation products in absence and presence of NOx over silver-alumina catalysts. ACS Catalysis, 2012, 2(8): 1615–1623

    Article  CAS  Google Scholar 

  27. Shimizu K, Satsuma A, Hattori T. Catalytic performance of Ag-Al2O3 catalyst for the selective catalytic reduction of NO by higher hydrocarbons. Applied Catalysis B: Environmental, 2016, 2000, 25(4): 239–247

    Article  CAS  Google Scholar 

  28. D’Agostino C, Chansai S, Bush I, Gao C, Mantle M D, Hardacre C, James S L, Gladden L F. Assessing the effect of reducing agents on the selective catalytic reduction of NOx over Ag/Al2O3 catalysts. Catalysis Science & Technology, 2016, 6(6): 1661–1666

    Article  CAS  Google Scholar 

  29. da Silva R, Cataluña R, Martínez-Arias A. Selective catalytic reduction of NOx using propene and ethanol over catalysts of Ag/Al2O3 prepared by microemulsion and promotional effect of hydrogen. Catalysis Today, 2009, 143(3–4): 242–246

    Article  CAS  Google Scholar 

  30. Kameoka S, Ukisu Y, Miyadera T. Selective catalytic reduction of NOx with CH3OH, C2H5OH and C3H6 in the presence of over O2 Ag/Al2O3 catalyst: Role of surface nitrate species. Physical Chemistry Chemical Physics, 2000, 2(3): 367–372

    Article  CAS  Google Scholar 

  31. Miyadera T. Alumina-supported silver catalysts for the selective reduction of nitric-oxide with propene and oxygen-containing organic-compounds. Applied Catalysis B: Environmental, 1993, 2 (2–3): 199–205

    Article  CAS  Google Scholar 

  32. Kim J Y, Kim Y H, Han S, Choi S H, Lee J S. Photocatalytic synthesis of oxygenated hydrocarbons from diesel fuel for mobile deNOx application. Journal of Catalysis, 2013, 302: 58–66

    Article  CAS  Google Scholar 

  33. Sultana A, Sasaki M, Suzuki K, Hamada H. Physical mixture of Ag/Al2O3 and Zn/ZSM-5 as an active catalyst component for selective catalytic reduction of NOx with n-C10H22. Applied Catalysis A, General, 2013, 466: 179–184

    Article  CAS  Google Scholar 

  34. Tham Y F, Chen J Y, Dibble R W. Development of a detailed surface mechanism for the selective catalytic reduction of NOx with ethanol on silver alumina catalyst. Proceedings of the Combustion Institute, 2009, 32(2): 2827–2833

    Article  CAS  Google Scholar 

  35. Worch D, Suprun W, Gläser R. Fe- and Cu-oxides supported on γ-Al2O3 as catalysts for the selective catalytic reduction of NO with ethanol. Part I: Catalyst preparation, characterization, and activity. Chemical Papers, 2014, 68(9): 1228–1239

    Article  CAS  Google Scholar 

  36. Shimokawabe M, Kuwana A, Oku S, Yoshida K, Arai M. SCR of NO by DME over Al2O3 based catalysts: Influence of noble metals and Ba additive on low-temperature activity. Catalysis Today, 2011, 164(1): 480–483

    Article  CAS  Google Scholar 

  37. Kameoka S, Chafik T, Ukisu Y, Miyadera T. Role of organic nitro compounds in selective reduction of NOx with ethanol over different supported silver catalysts. Catalysis Letters, 1998, 51(1–2): 11–14

    Article  CAS  Google Scholar 

  38. Bartolomeu R, Azambre B, Westermann A, Fernandes A, Bértolo R, Hamoud H I, Henriques C, Da Costa P, Ribeiro F. Investigation of the nature of silver species on different Ag-containing NOx reduction catalysts: On the effect of the support. Applied Catalysis B: Environmental, 2014, 150–151: 204–217

    Article  CAS  Google Scholar 

  39. Miyadera T, Yoshida K. Alumina-supported catalysts for the selective reduction of nitric oxide by propene. Chemistry Letters, 1993, 22(9): 1483–1486

    Article  Google Scholar 

  40. Takagi K, Kobayashi T, Ohkita H, Mizushima T, Kakuta N, Abe A, Yoshida K. Selective reduction of NO on Ag/Al2O3 catalysts prepared from boehmite needles. Catalysis Today, 1998, 45(1–4): 123–127

    Article  CAS  Google Scholar 

  41. Shimizu K, Satsuma A, Hattori T. Metal oxide catalysts for selective reduction of NOx by hydrocarbons: Toward molecular basis for catalyst design. Catalysis Surveys from Asia, 2001, 4(2): 115–123

    Article  Google Scholar 

  42. Miyadera T. Selective reduction of nitric oxide with ethanol over an alumina-supported silver catalyst. Applied Catalysis B: Environmental, 1997, 13(2): 157–165

    Article  CAS  Google Scholar 

  43. Fogel S, Doronkin D E, Gabrielsson P, Dahl S. Optimisation of Ag loading and alumina characteristics to give Sulphur-tolerant Ag/Al2O3 catalyst for H2-assisted NH3-SCR of NOx. Applied Catalysis B: Environmental, 2012, 125: 457–464

    Article  CAS  Google Scholar 

  44. Richter M, Fricke R, Eckelt R. Unusual activity enhancement of NO conversion over Ag/Al2O3 by using a mixed NH3/H2 reductant under lean conditions. Catalysis Letters, 2004, 94(1–2): 115–118

    Article  CAS  Google Scholar 

  45. Tamm S, Andonova S, Olsson L. Silver as storage compound for NOx at low temperatures. Catalysis Letters, 2014, 144(4): 674–684

    Article  CAS  Google Scholar 

  46. Lee J, Schmieg S J, Oh S H. Catalytic reforming of ethanol to acetaldehyde for lean-NOx emission control. Industrial & Engineering Chemistry Research, 2004, 43(20): 6343–6348

    Article  CAS  Google Scholar 

  47. Schmal M, Cesar D V, Souza M M V M, Guarido C E. Drifts and TPD analyses of ethanol on Pt catalysts over Al2O3 and ZrO2—partial oxidation of ethanol. Canadian Journal of Chemical Engineering, 2011, 89(5): 1166–1175

    Article  CAS  Google Scholar 

  48. Barresi A A, Baldi G. Reaction mechanisms of ethanol deep oxidation over platinum catalyst. Chemical Engineering Communications, 1993, 123(1): 17–29

    Article  CAS  Google Scholar 

  49. Ozbek M O, Onal I, Van Santen R A. Why silver is the unique catalyst for ethylene epoxidation. Journal of Catalysis, 2011, 284 (2): 230–235

    Article  CAS  Google Scholar 

  50. Torbina V V, Vodyankin A A, Ten S, Mamontov G V, Salaev M A, Sobolev V I, Vodyankina O V. Ag-based catalysts in heterogeneous selective oxidation of alcohols: A review. Catalysts, 2018, 8(10): 447

    Article  CAS  Google Scholar 

  51. Millar G J, Collins M. Industrial production of formaldehyde using polycrystalline silver catalyst. Industrial & Engineering Chemistry Research, 2017, 56(33): 9247–9265

    Article  CAS  Google Scholar 

  52. Liotta L F. Catalytic oxidation of volatile organic compounds on supported noble metals. Applied Catalysis B: Environmental, 2010, 100(3–4): 403–412

    Article  CAS  Google Scholar 

  53. She X, Flytzani-Stephanopoulos M. The role of Ag-O-Al species in silver-alumina catalysts for the selective catalytic reduction of NOx with methane. Journal of Catalysis, 2006, 237(1): 79–93

    Article  CAS  Google Scholar 

  54. Musi A, Massiani P, Brouri D, Trichard J M, Da Costa P. On the characterisation of silver species for SCR of NOx with ethanol. Catalysis Letters, 2009, 128(1–2): 25–30

    Article  CAS  Google Scholar 

  55. Bogdanchikova N, Meunier F C, Avalos-Borja M, Breen J P, Pestryakov A. On the nature of the silver phases of Ag/Al2O3 catalysts for reactions involving nitric oxide. Applied Catalysis B: Environmental, 2002, 36(4): 287–297

    Article  CAS  Google Scholar 

  56. Kim Y C, Park N C, Shin J S, Lee S R, Lee Y J, Moon D J. Partial oxidation of ethylene to ethylene oxide over nanosized Ag/α-Al2O3 catalysts. Catalysis Today, 2003, 87(1–4): 153–162

    Article  CAS  Google Scholar 

  57. Pârvulescu V I, Cojocaru B, Pârvulescu V, Richards R, Li Z, Cadigan C, Granger P, Miquel P, Hardacre C. Sol-gel-entrapped nano silver catalysts-correlation between active silver species and catalytic behavior. Journal of Catalysis, 2010, 272(1): 92–100

    Article  CAS  Google Scholar 

  58. Seyedmonir S R, Strohmayer D E, Geoffroy G L, Vannice M A. Characterization of supported silver catalysts I. Adsorption of O2, H2,N2O, and the H2-titration of adsorbed oxygen on well-dispersed Ag on TiO2. Journal of Catalysis, 1984, 87(2): 424–436

    Article  CAS  Google Scholar 

  59. Chongterdtoonskul A, Suttikul T, Santikunaporn M, Schwank J W, Chavadej S. Effect of diluent gas on ethylene epoxidation activity over various Ag-based catalysts on selective oxide supports. Journal of Molecular Catalysis A Chemical, 2014, 386: 5–13

    Article  CAS  Google Scholar 

  60. Sayah E, Brouri D, Wu Y, Musi A, Da Costa P, Massiani P A. TEM and UV-visible study of silver reduction by ethanol in Ag-alumina catalysts. Applied Catalysis A, General, 2011, 406(1–2): 94–101

    Article  CAS  Google Scholar 

  61. Shimizu K I, Sugino K, Sawabe K, Satsuma A. Oxidant-free dehydrogenation of alcohols heterogeneously catalyzed by cooperation of silver clusters and acid-base sites on alumina. Chemistry (Weinheim an der Bergstrasse, Germany), 2009, 15(10): 2341–2351

    CAS  Google Scholar 

  62. Wu Q, He H, Yu Y. In situ DRIFTS study of the selective reduction of NOx with alcohols over Ag/Al2O3 catalyst: Role of surface enolic species. Applied Catalysis B: Environmental, 2005, 61(1–2): 107–113

    Article  CAS  Google Scholar 

  63. Kim M K, Kim P S, Kwon H J, Nam I S, Cho B K, Oh S H. Simulation of OHC/SCR process over Ag/Al2O3 catalyst for removing NOx from diesel engine. Chemical Engineering Journal, 2012, 209: 280–292

    Article  CAS  Google Scholar 

  64. Flura A, Courtois X, Can F, Royer S, Duprez D. A study of the NOx selective catalytic reduction with ethanol and its by-products. Topics in Catalysis, 2013, 56(1–8): 94–103

    Article  CAS  Google Scholar 

  65. Deng H, Yu Y, He H. Adsorption states oftypical intermediates on Ag/Al2O3 catalyst employed in the selective catalytic reduction of NOx by ethanol. Chinese Journal of Catalysis, 2015, 36(8): 1312–1320

    Article  CAS  Google Scholar 

  66. Yan Y, Yu Y, He H, Zhao J. Intimate contact of enolic species with silver sites benefits the SCR of NOx by ethanol over Ag/Al2O3. Journal of Catalysis, 2012, 293: 13–26

    Article  CAS  Google Scholar 

  67. Zuzaniuk V, Meunier F C, Ross J R H. Differences in the reactivity of organo-nitro and nitrito compounds over Al2O3-based catalysts active for the selective reduction of NOx. Journal of Catalysis, 2001, 202(2): 340–353

    Article  CAS  Google Scholar 

  68. Yu Y B, Gao H W, He H. FTIR, TPD and DFT studies of intermediates on Ag/Al2O3 during the selective catalytic reduction of NO by C2H5OH. Catalysis Today, 2004, 93–95: 805–809

    Article  CAS  Google Scholar 

  69. Wu Q, Yu Y, He H. Mechanistic study of selective catalytic reduction of NOx with C2H5OH and CH3OCH3 over Ag/Al2O3 by in situ DRIFTS. Chinese Journal of Catalysis, 2006, 27(11): 993–997

    Article  CAS  Google Scholar 

  70. Yu Y, He H, Feng Q, Gao H, Yang X. Mechanism of the selective catalytic reduction of NOx by C2H5OH over Ag Al2O3. Applied Catalysis B: Environmental, 2004, 49(1): 159–171

    Article  CAS  Google Scholar 

  71. Yeom Y H, Li M, Sachtler W M H, Weitz E. A study of the mechanism for NOx reduction with ethanol on γ-alumina supported silver. Journal of Catalysis, 2006, 238(1): 100–110

    Article  CAS  Google Scholar 

  72. Bion N, Saussey J, Haneda M, Daturi M. Study by in situ FTIR spectroscopy of the SCR of NOx by ethanol on Ag/Al2O3-Evidence of the role of isocyanate species. Journal of Catalysis, 2003, 217 (1): 47–58

    CAS  Google Scholar 

  73. Shimizu K, Shibata J, Satsuma A, Hattori T. Mechanistic causes of the hydrocarbon effect on the activity of Ag-Al2O3 catalyst for the selective reduction of NO. Physical Chemistry Chemical Physics, 2001, 3(5): 880–884

    Article  CAS  Google Scholar 

  74. Lee J H, Schmieg S J, Oh S H. Improved NOx reduction over the staged Ag/Al2O3 catalyst system. Applied Catalysis A, General, 2008, 342(1–2): 78–86

    Article  CAS  Google Scholar 

  75. Kopasz J P, Wilkenhoener R, Ahmed S, Carter J D, Krtunpelt M. Fuel-flexible partial oxidation reforming of hydrocarbons for automotive applications, U.S. DOE Report ANL/CMT/CP-98970, 1999

  76. Zaera F. The surface chemistry of hydrocarbon partial oxidation catalysis. Catalysis Today, 2003, 81(2): 149–157

    Article  CAS  Google Scholar 

  77. Oakley A, Zhao H, Ladommatos N, Ma T. Dilution effects on the controlled auto-ignition (CAI) combustion of hydrocarbon and alcohol fuels. SAE Technical Papers, 2001, 2001-01-3606

  78. Williams R M, Pang S H, Medlin J W. O-H versus C-H bond scission sequence in ethanol decomposition on Pd(111). Surface Science, 2014, 619: 114–118

    Article  CAS  Google Scholar 

  79. Gunnarsson F, Pihl J A, Toops T J, Skoglundh M, Härelind H. Lean NOx reduction over Ag/alumina catalysts via ethanol-SCR using ethanol/gasoline blends. Applied Catalysis B: Environmental, 2017, 202: 42–50

    Article  CAS  Google Scholar 

  80. Pihl J A, Toops T J, Fisher G B, West B H. Selective catalytic reduction of nitric oxide with ethanol/gasoline blends over a silver/alumina catalyst. Catalysis Today, 2014, 231: 46–55

    Article  CAS  Google Scholar 

  81. Herreros J M, George P, Umar M, Tsolakis A. Enhancing selective catalytic reduction of NOx with alternative reactants/promoters. Chemical Engineering Journal, 2014, 252: 47–54

    Article  CAS  Google Scholar 

  82. Dong H, Shuai S, Li R, Wang J, Shi X, He H. Study of NOx selective catalytic reduction by ethanol over Ag/Al2O3 catalyst on a HD diesel engine. Chemical Engineering Journal, 2008, 135(3): 195–201

    Article  CAS  Google Scholar 

  83. He H, Zhang X, Wu Q, Zhang C, Yu Y. Review of Ag/Al2O3-reductant system in the selective catalytic reduction of NOx. Catalysis Surveys from Asia, 2008, 12(1): 38–55

    Article  CAS  Google Scholar 

  84. Kattel S, Ramírez P J, Chen J G, Rodriguez J A, Liu P. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science, 2017, 355(6331): 1296–1299

    Article  PubMed  CAS  Google Scholar 

  85. Meunier F C, Breen J P, Zuzaniuk V, Olsson M, Ross J R H. Mechanistic aspects of the selective reduction of NO by propene over alumina and silver-alumina catalysts. Journal of Catalysis, 1999, 187(2): 493–505

    Article  CAS  Google Scholar 

  86. Zhang X, He H, Gao H, Yu Y. Experimental and theoretical studies of surface nitrate species on Ag/Al2O3 using DRIFTS and DFT. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 2008, 71(4): 1446–1451

    Article  CAS  Google Scholar 

  87. Kameoka S, Chafik T, Ukisu Y, Miyadera T. Reactivity of surface isocyanate species with NO, O2 and NO + O2 in selective reduction of NOx over Ag/Al2O3 and Al2O3 catalysts. Catalysis Letters, 1998, 55(3–4): 211–215

    Article  CAS  Google Scholar 

  88. Yeom Y H, Wen B, Sachtler W M H, Weitz E. NOx reduction from diesel emissions over a nontransition metal zeolite catalyst: A mechanistic study using FTIR spectroscopy. Journal of Physical Chemistry B, 2004, 108(17): 5386–5404

    Article  CAS  Google Scholar 

  89. Johnson W L II, Fisher G B, Toops T J. Mechanistic investigation of ethanol SCR of NOx over Ag/Al2O3. Catalysis Today, 2012, 184 (1): 166–177

    Article  CAS  Google Scholar 

  90. Yu Y B, He H, Feng Q C. Novel enolic surface species formed during partial oxidation of CH3CHO, C2H5OH, and C3H6 on Ag/Al2O3:An in situ DRIFTS study. Journal of Physical Chemistry B, 2003, 107(47): 13090–13092

    Article  CAS  Google Scholar 

  91. Okazaki N, Shiina Y, Itoh H, Tada A, Iwamoto M. Marked difference in activity of alumina catalysts for selective catalytic reduction of nitrogen monoxide by ethene in excess oxygen. Catalysis Letters, 1997, 49(3): 1–6

    Google Scholar 

  92. Mhadeshwar A B, Winkler B H, Eiteneer B, Hancu D. Microkinetic modeling for hydrocarbon (HC)-based selective catalytic reduction (SCR) of NOx on a silver-based catalyst. Applied Catalysis B: Environmental, 2009, 89(1–2): 229–238

    Article  CAS  Google Scholar 

  93. Sultana A, Haneda M, Fujitani T, Hamada H. Influence of Al2O3 support on the activity of Ag/Al2O3 catalysts for SCR of NO with decane. Catalysis Letters, 2007, 114(1–2): 96–102

    Article  CAS  Google Scholar 

  94. Zhang R, Kaliaguine S. Lean reduction of NO by C3H6 over Ag/alumina derived from Al2O3, AlOOH and Al(OH)3. Applied Catalysis B: Environmental, 2008, 78(3–4): 275–287

    Article  CAS  Google Scholar 

  95. Deng H, Yu Y, He H. Discerning the role of Ag-O-Al entities on Ag/γ-Al2O3 surface in NOx selective reduction by ethanol. Journal of Physical Chemistry C, 2015, 119(6): 3132–3142

    Article  CAS  Google Scholar 

  96. Thibault-Starzyk F, Seguin E, Thomas S, Daturi M, Arnolds H, King D A. Real-time infrared detection of cyanide flip on silver-alumina NOx removal catalyst. Science, 2009, 324(5930): 1048–1051

    Article  PubMed  CAS  Google Scholar 

  97. Can F, Flura A, Courtois X, Royer S, Blanchard G, Marécot P, Duprez D. Role of the alumina surface properties on the ammonia production during the NOx SCR with ethanol over Ag/Al2O3 catalysts. Catalysis Today, 2011, 164(1): 474–479

    Article  CAS  Google Scholar 

  98. Popovich N A, Kiriienko P I, Soloviev S, Orlik S N, Dzwigaj S. Role of active components of an Ag/Al2O3/cordierite catalyst in selective reduction of NO by ethanol. Theoretical and Experimental Chemistry, 2012, 48(4): 258–264

    Article  CAS  Google Scholar 

  99. Popovych N, Kirienko P, Soloviev S, Orlyk S. Selective catalytic reduction of NOx by C2H5OH over Ag/Al2O3/cordierite: Effect of the surface concentration of silver. Catalysis Today, 2012, 191(1): 38–41

    Article  CAS  Google Scholar 

  100. Dzwigaj S, Popovych N, Kyriienko P, Krafft J M, Soloviev S. The similarities and differences in structural characteristics and physico-chemical properties of AgAlBEA and AgSiBEA zeolites. Microporous and Mesoporous Materials, 2013, 182: 16–24

    Article  CAS  Google Scholar 

  101. Popovych N, Kyriienko P, Soloviev S, Orlyk S, Dzwigaj S. Catalytic properties of AgAlBEA and AgSiBEA zeolites in H2-promoted selective reduction of NO with ethanol. Microporous and Mesoporous Materials, 2015, 203: 163–169

    Article  CAS  Google Scholar 

  102. Valanidou L, Theologides C, Zorpas A A, Savva P G, Costa C N. A novel highly selective and stable Ag/MgO-CeO2-Al2O3 catalyst for the low-temperature ethanol-SCR of NO. Applied Catalysis B: Environmental, 2011, 107(1–2): 164–176

    Article  CAS  Google Scholar 

  103. Shi Y, Pan H, Zhang Y, Li W. Promotion of MgO addition on SO2 tolerance of Ag/Al2O3 for selective catalytic reduction of NOx with methane at low temperature. Catalysis Communications, 2008, 9 (5): 796–800

    Article  CAS  Google Scholar 

  104. Flura A, Can F, Courtois X, Royer S, Duprez D. High-surface-area zinc aluminate supported silver catalysts for low-temperature SCR of NO with ethanol. Applied Catalysis B: Environmental, 2012, 126: 275–289

    Article  CAS  Google Scholar 

  105. Shimizu K, Sawabe K, Satsuma A. Unique catalytic features of Ag nanoclusters for selective NOx reduction and green chemical reactions. Catalysis Science & Technology, 2011, 1(3): 331–334

    Article  CAS  Google Scholar 

  106. Bion N, Saussey J, Hedouin C, Seguelong T, Daturi M. Evidence by in situ FTIR spectroscopy and isotopic effect of new assignments for isocyanate species vibrations on Ag/Al2O3. Physical Chemistry Chemical Physics, 2001, 3(21): 4811–4816

    Article  CAS  Google Scholar 

  107. Deng H, Yu Y, Liu F, Ma J, Zhang Y, He H. Nature of Ag species on Ag/γ-Al2O3: A combined experimental and theoretical study. ACS Catalysis, 2014, 4(8): 2776–2784

    Article  CAS  Google Scholar 

  108. Kyriienko P, Popovych N, Soloviev S, Orlyk S, Dzwigaj S. Remarkable activity of Ag/Al2O3/cordierite catalysts in SCR of NO with ethanol and butanol. Applied Catalysis B: Environmental, 2013, 140–141: 691–699

    Article  CAS  Google Scholar 

  109. Popovych N O, Kyriienko P I, Soloviev S O, Orlyk S M. Selective reduction of NO by C3 and C8 alkanes over silver catalysts on structured Al2O3 cordierite supports. Theoretical and Experimental Chemistry, 2015, 51(2): 122–126

    Article  CAS  Google Scholar 

  110. Chaieb T, Delannoy L, Louis C, Thomas C. On the origin of the optimum loading of Ag on Al2O3 in the C3H6-SCR of NOx. Applied Catalysis B: Environmental, 2013, 142–143: 780–784

    Article  CAS  Google Scholar 

  111. Xu G, Ma J, Wang L, **e W, Liu J, Yu Y, He H. Insight into the origin of sulfur tolerance of Ag/Al2O3 in the H2-C3H6-SCR of NOx. Applied Catalysis B: Environmental, 2019, 244: 909–918

    Article  CAS  Google Scholar 

  112. Wachs I E, Madix R J. The jxidation of ethanol on Cu(110) and Ag (110) catalysts. Applied Surface Science, 1978, 1(3): 303–328

    Article  CAS  Google Scholar 

  113. Deng H, Yu Y, He H. Water effect on preparation of Ag/Al2O3 catalyst for reduction of NOx by ethanol. Journal of Physical Chemistry C, 2016, 120(42): 24294–24301

    Article  CAS  Google Scholar 

  114. Xu G, Yu Y, He H. Silver valence state determines the water tolerance of Ag/Al2O3 for the H2-C3H6-SCR of NOx. Journal of Physical Chemistry C, 2018, 122(1): 670–680

    Article  CAS  Google Scholar 

  115. He H, Li Y, Zhang X, Yu Y, Zhang C. Precipitable silver compound catalysts for the selective catalytic reduction of NOx by ethanol. Applied Catalysis A, General, 2010, 375(2): 258–264

    Article  CAS  Google Scholar 

  116. Iglesias-Juez A, Fernandez-Garcia M, Martinez-Arias A, Schay Z, Koppany Z, Hungrıa A B, Fuerte A, Anderson J A, Conesa J C, Soria J. Catalytic properties of Ag/Al2O3 catalysts for lean NOx reduction processes and characterisation of active silver species. Topics in Catalysis, 2004, 30/31(1–4): 65–70

    Article  CAS  Google Scholar 

  117. Korhonen S T, Beale A M, Newton M A, Weckhuysen B M. New insights into the active surface species of silver alumina catalysts in the selective catalytic reduction of NO. Journal of Physical Chemistry C, 2011, 115(4): 885–896

    Article  CAS  Google Scholar 

  118. Iliopoulou E F, Evdou A P, Lemonidou A A, Vasalos I A. Ag/alumina catalysts for the selective catalytic reduction of NOx using various reductants. Applied Catalysis A, General, 2004, 274(1): 179–189

    Article  CAS  Google Scholar 

  119. Männikkö M, Wang X, Skoglundh M, Härelind H. Characterization of the active species in the silver/alumina system for lean NOx reduction with methanol. Catalysis Today, 2016, 267: 76–81

    Article  CAS  Google Scholar 

  120. Männikkö M, Wang X, Skoglundh M, Härelind H. Silver/alumina for methanol-assisted lean NOx reduction—on the influence of silver species and hydrogen formation. Applied Catalysis B: Environmental, 2016, 180: 291–300

    Article  CAS  Google Scholar 

  121. Kim M K, Kim P S, Baik J H, Nam I S, Cho B K, Oh S H. DeNOx performance of Ag/Al2O3 catalyst using simulated diesel fuel-ethanol mixture as reductant. Applied Catalysis B: Environmental, 2011, 105(1–2): 1–14

    Article  CAS  Google Scholar 

  122. Golay S, Doepper R, Renken A. In-situ characterisation of the surface intermediates for the ethanol dehydration reaction over γ-alumina under dynamic conditions. Applied Catalysis A, General, 1998, 172(1): 97–106

    Article  CAS  Google Scholar 

  123. Liu X, Klust A, Madix R J, Friend C M. Structure Sensitivity in the Partial Oxidation of Styrene, Styrene Oxide, and Phenylacetaldehyde on Silver Single Crystals. Journal of Physical Chemistry C, 2007, 111(9): 3675–3679

    Article  CAS  Google Scholar 

  124. Özbek M O, Önal I, Vansanten R A. Ethylene epoxidation catalyzed by silver oxide. ChemCatChem, 2011, 3(1): 150–153

    Article  CAS  Google Scholar 

  125. Sato K, Yoshinari T, Kintaichi Y, Haneda M, Hamada H. Remarkable promoting effect of rhodium on the catalytic performance of Ag/Al2O3 for the selective reduction of NO with decane. Applied Catalysis B: Environmental, 2003, 44(1): 67–78

    Article  CAS  Google Scholar 

  126. Bethke K A, Kung H H. Supported Ag catalysts for the lean reduction of NO with C3H6. Journal of Catalysis, 1997, 172(1): 93–102

    Article  CAS  Google Scholar 

  127. More P M. Effect of active component addition and support modification on catalytic activity of Ag/Al2O3 for the selective catalytic reduction of NOx by hydrocarbon—A review. Journal of Environmental Management, 2017, 188: 43–48

    Article  PubMed  CAS  Google Scholar 

  128. **e S, Yu Y, Wang J, He H. Effect of SO2 on the performance of Ag-Pd/Al2O3 for the selective catalytic reduction of NOx with C2H5OH. Journal of Environmental Sciences (China), 2006, 18(5): 973–978

    Article  CAS  Google Scholar 

  129. Zhang C, He H, Shuai S, Wang J. Catalytic performance of Ag/Al2O3-C2H5OH-Cu/Al2O3 system for the removal of NOx from diesel engine exhaust. Environmental Pollution, 2007, 147(2): 415–421

    Article  PubMed  CAS  Google Scholar 

  130. Brookshear D W, Pihl J A, Toops T J, West B, Prikhodko V. The selective catalytic reduction of NOx over Ag/Al2O3 with isobutanol as the reductant. Catalysis Today, 2016, 267: 65–75

    Article  CAS  Google Scholar 

  131. Montemore M M, Medlin J W. Predicting and comparing C-M and O-M bond strengths for adsorption on transition metal surfaces. Journal of Physical Chemistry C, 2014, 118(5): 2666–2672

    Article  CAS  Google Scholar 

  132. Montemore M M, Medlin J W. A unified picture of adsorption on transition metals through different atoms. Journal of the American Chemical Society, 2014, 136(26): 9272–9275

    Article  PubMed  CAS  Google Scholar 

  133. Zhang R, Gellman A J. Straight-chain alcohol adsorption of the silver(110) surface. Journal of Physical Chemistry, 1991, 95(19): 7433–7437

    Article  CAS  Google Scholar 

  134. Sexton B A, Rendulic K D, Huges A E. Decomposition pathways of C1-C4 alcohols adsorbed on on platinum (111). Surface Science Letters, 1982, 121(1): 181–198

    Article  CAS  Google Scholar 

  135. Rossi P F, Rossi P. Heats of adsorption of aliphatic alcohols on α-Al2O3 at 25°C–200°C. I. Variations with experimental temperature. Adsorption Science and Technology, 1996, 13(4): 215–229

    Article  CAS  Google Scholar 

  136. Rossi P F, Rossi P. Heats of adsorption of aliphatic alcohols on α-Al2O3 at 25°C-200°C. II. Variations with chain length. Adsorption Science and Technology, 1997, 15(1): 69–77

    Article  CAS  Google Scholar 

  137. Ukisu Y, Miyadera T, Abe A, Yoshida K. Infrared study of catalytic reduction of lean NOx with alcohols over alumina-supported silver catalyst. Catalysis Letters, 1996, 39(3): 265–267

    Article  CAS  Google Scholar 

  138. Tamm S, Ingelsten H H, Skoglundh M, Palmqvist A E C. Mechanistic aspects of the selective catalytic reduction of NOx by dimethyl ether and methanol over γ-Al2O3. Journal of Catalysis, 2010, 276(2): 402–411

    Article  CAS  Google Scholar 

  139. Tamm S, Ingelsten H H, Skoglundh M, Palmqvist A E C. Differences between Al2O3 and Ag Al2O3 for lean reduction of NOx with dimethyl ether. Topics in Catalysis, 2009, 52(13): 1813–1816

    Article  CAS  Google Scholar 

  140. Tamm S, Ingelsten H H, Palmqvist A E C. DME as reductant for continuous lean reduction of NOx over ZSM-5 catalysts. Catalysis Letters, 2008, 123(3–4): 233–238

    Article  CAS  Google Scholar 

  141. Yu Y, Song X, He H. Remarkable influence of reductant structure on the activity of alumina-supported silver catalyst for the selective catalytic reduction of NOx. Journal of Catalysis, 2010, 271(2): 343–350

    Article  CAS  Google Scholar 

  142. Kim M K, Kim P S, Cho B K, Nam I S, Oh S H. Enhanced NOx reduction and byproduct removal by (HC + OHC)/SCR over multifunctional dual-bed monolith catalyst. Catalysis Today, 2012, 184(1): 95–106

    Article  CAS  Google Scholar 

  143. Chansai S, Burch R, Hardacre C, Norton D, Bao X, Lewis L. Investigating the promotional effect of methanol on the low temperature SCR reaction on Ag/Al2O3. Applied Catalysis B: Environmental, 2014, 160–161: 356–364

    Article  CAS  Google Scholar 

  144. Satokawa S. Enhancing the NO/C3H8/O2 reaction by using H2 over Ag/Al2O3 catalysts under lean-exhaust conditions. Chemistry Letters, 2000, 29(3): 294–295

    Article  Google Scholar 

  145. Breen J P, Burch R. A review of the effect of the addition of hydrogen in the selective catalytic reduction of NOx with hydrocarbons on silver catalysts. Topics in Catalysis, 2006, 39(1–2): 53–58

    Article  CAS  Google Scholar 

  146. Zhang X, He H, Ma Z. Hydrogen promotes the selective catalytic reduction of NOx by ethanol over Ag/Al2O3. Catalysis Communications, 2007, 8(2): 187–192

    Article  CAS  Google Scholar 

  147. Shimizu K I, Tsuzuki M, Satsuma A. Effects of hydrogen and oxygenated hydrocarbons on the activity and SO2-tolerance of Ag/Al2O3 for selective reduction of NO. Applied Catalysis B: Environmental, 2007, 71(1–2): 80–84

    Article  CAS  Google Scholar 

  148. Goula M A, Charisiou N D, Papageridis K N, Delimitis A, Papista E, Pachatouridou E, Iliopoulou E F, Marnellos G, Konsolakis M, Yentekakis I V. A comparative study of the H2-assisted selective catalytic reduction of nitric oxide by propene over noble metal (Pt, Pd, Ir)/γ-Al2O3 catalysts. Journal of Environmental Chemical Engineering, 2016, 4(2): 1629–1641

    Article  CAS  Google Scholar 

  149. Gu H, Chun K M, Song S. The effects of hydrogen on the efficiency of NOx reduction via hydrocarbon-selective catalytic reduction (HC-SCR) at low temperature using various reductants. International Journal of Hydrogen Energy, 2015, 40(30): 9602–9610

    Article  CAS  Google Scholar 

  150. Yu Y, Li Y, Zhang X, Deng H, He H, Li Y. Promotion effect of H2 on ethanol oxidation and NOx reduction with ethanol over Ag/Al2O3 catalyst. Environmental Science & Technology, 2015, 49(1): 481–488

    Article  CAS  Google Scholar 

  151. Popovych N O, Kyriienko P I, Soloviev S O, Orlyk S M, Dzwigaj S. Influence of partial dealumination of BEA zeolites on physicochemical and catalytic properties of AgAlSiBEA in H2-promoted SCR of NO with ethanol. Microporous and Mesoporous Materials, 2016, 226: 10–18

    Article  CAS  Google Scholar 

  152. Xu G, Yu Y, He H. A low-temperature route triggered by water vapor during the ethanol-SCR of NOx over Ag/Al2O3. ACS Catalysis, 2018, 8(4): 2699–2708

    Article  CAS  Google Scholar 

  153. Xu G, Ma J, He G, Yu Y, He H. An alumina-supported silver catalyst with high water tolerance for H2 assisted C3H6-SCR of NOx. Applied Catalysis B: Environmental, 2017, 207: 60–71

    Article  CAS  Google Scholar 

  154. Sumiya S, Saito M, He H, Feng Q C, Takezawa N, Yoshida K. Reduction of lean NOx by ethanol over Ag/Al2O3 catalysts in the presence of H2O and SO2. Catalysis Letters, 1998, 50(1–2): 87–91

    Article  CAS  Google Scholar 

  155. Abe A, Aoyama N, Sumiya S, Kakuta N, Yoshida K. Effect of SO2 on NOx reduction by ethanol over Ag/Al2O3 catalyst. Catalysis Letters, 1998, 51(1–2): 5–9

    Article  CAS  Google Scholar 

  156. Houel V, Millington P, Pollington S, Poulston S, Rajaram R R, Tsolakis A. Chemical deactivation of Ag/Al2O3 by sulphur for the selective reduction of NOx using hydrocarbons. Catalysis Today, 2006, 114(4): 334–339

    Article  CAS  Google Scholar 

  157. Hu Y, Griffiths K. Selective catalytic reduction of NO in the presence of SO2 and O2: The poisoning effect of SOx under oxygen rich and lean conditions. Surface Science, 2018, 676: 23–29

    Article  CAS  Google Scholar 

  158. Wu Q, Feng Q, He H. Disparate effects of SO2 on the selective catalytic reduction of NO by C2H5OH and IPA over Ag/Al2O3. Catalysis Communications, 2006, 7(9): 657–661

    Article  CAS  Google Scholar 

  159. Hickey N, Fornasiero P, Kaspar J, Graziani M, Martra G, Coluccia S, Biella S, Prati L, Rossi M. Improvement of SOx-resistance of silver lean-DeNOx catalysts by supporting on CeO2-containing zirconia. Journal of Catalysis, 2002, 209(1): 271–274

    Article  CAS  Google Scholar 

  160. Hickey N, Boscarato I, Kaspar J, Bertinetti L, Botavina M, Martra G. Effect of the support on activity of silver catalysts for the selective reduction of NO by propene. Applied Catalysis B: Environmental, 2010, 100(1–2): 102–115

    Article  CAS  Google Scholar 

  161. Liotta L F, Di Carlo G, Pantaleo G, Venezia A M, Deganello G, Merlone Borla E, Pidria M. Combined CO/CH4 oxidation tests over Pd/Co3O4 monolithic catalyst: Effects of high reaction temperature and SO2 exposure on the deactivation process. Applied Catalysis B: Environmental, 2007, 75(3–4): 182–188

    Article  CAS  Google Scholar 

  162. Soloviev S O, Kyriienko P I, Popovych N O. Effect of CeO2 and Al2O3 on the activity of Pd/Co3O4/cordierite catalyst in the three-way catalysis reactions (CO/NO/CnHm). Journal of Environmental Sciences (China), 2012, 24(7): 1327–1333

    Article  CAS  Google Scholar 

  163. Masuda K, Tsujimura K, Shinoda K, Kato T. Silver-promoted catalyst for removal of nitrogen oxides from emission of diesel engines. Applied Catalysis B: Environmental, 1996, 8(1): 33–40

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author expresses his gratitude to Prof. Svitlana M. Orlyk and Dr. Nataliia O. Popovych for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavlo I. Kyriienko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kyriienko, P.I. Selective catalytic reduction of NOx with ethanol and other C1–4 oxygenates over Ag/Al2O3 catalysts: A review. Front. Chem. Sci. Eng. 14, 471–491 (2020). https://doi.org/10.1007/s11705-019-1847-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-019-1847-7

Keywords

Navigation