Log in

Biomimetic mineralization and cytocompatibility of nanorod hydroxyapatite/graphene oxide composites

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Nanorod hydroxyapatite (NRHA)/graphene oxide (GO) composites with weight ratios of 0.4, 1.5, and 5 have been fabricated by a facile ultrasonic-assisted method at room temperature and atmospheric pressure. The chemical structure properties and morphology of the composites were characterized by field emission source scanning electron microscope, X-ray diffraction, transmission electron microscopy, and high-resolution transmission electron microscopy. The results indicate that the NRHA/ GO composites have an irregular surface with different degree wrinkles and are stable, and NRHA are well combined with GO. In addition, the biomimetic mineralization mechanism of hydroxyapatite on the NRHA/GO composites in simulated body fluid (SBF) is presented. The presence of a bone-like apatite layer on the composite surface indicate that the NRHA/GO composites facilitate the nucleation and growth of hydroxyapatite crystals in SBF for biomimetic mineralization. Moreover, the NRHA- 1.5/GO composite and pure GO were cultured with MC3T3-E1 cells to investigate the proliferation and adhesion of cells. In vitro cytocompatibility evaluation demonstrated that the NRHA/GO composite can act as a good template for the growth and adhesion of cells. Therefore, the NRHA/GO composite could be applied as a GO-based, free-template, non-toxic, and bioactive composite to substitute for a damaged or defect bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shi Y Y, Li M, Liu Q, Jia Z J, Xu X C, Cheng Y, Zheng Y F. Electrophoretic deposition of graphene oxide reinforced chitosanhydroxyapatite nanocomposite coatings on Ti substrate. Journal of Materials Science. Materials in Medicine, 2016, 27(3): 48

    Article  CAS  PubMed  Google Scholar 

  2. Li M, Liu Q, Jia Z J, Xu X C, Shi Y Y, Cheng Y, Zheng Y F, ** T F, Wei S C. Electrophoretic deposition and electrochemical behavior of novel graphene oxide-hyaluronic acid-hydroxyapatite nanocomposite coatings. Applied Surface Science, 2013, 284: 804–810

    Article  CAS  Google Scholar 

  3. Li P, Sun S Y, Dong A, Hao Y P, Shi S Q, Sun Z J, Gao G, Chen Y X. Develo** of a novel antibacterial agent by functionalization of graphene oxide with guanidine polymer with enhanced antibacterial activity. Applied Surface Science, 2015, 355: 446–452

    Article  CAS  Google Scholar 

  4. Wang K W, Zhu Y J, Chen F, Cheng G F, Huang Y H. Microwaveassisted synthesis of hydroxyapatite hollow microspheres in aqueous solution. Materials Letters, 2011, 65(15-16): 2361–2363

    Article  CAS  Google Scholar 

  5. Kumar S, Chatterjee K. Comprehensive review on the use of graphene-based substrates for regenerative medicine and biomedical devices. ACS Applied Materials & Interfaces, 2016, 8(40): 26431–26457

    Article  CAS  Google Scholar 

  6. Liu L P, Yang X N, Ye L, Xue D D, Liu M, Jia S R, Hou Y, Chu L Q, Zhong C. Preparation and characterization of a photocatalytic antibacterial material: Graphene oxide/TiO2/bacterial cellulose nanocomposite. Carbohydrate Polymers, 2017, 174: 1078–1086

    Article  CAS  PubMed  Google Scholar 

  7. Li Q, Yong C Y, Cao W W, Wang X, Wang L N, Zhou J, **ng X D. Fabrication of charge reversible graphene oxide-based nanocomposite with multiple antibacterial modes and magnetic recyclability. Journal of Colloid and Interface Science, 2017, 511: 285–295

    Article  CAS  PubMed  Google Scholar 

  8. **e X Y, Hu K W, Fang D D, Shang L H, Tran S D, Cerruti M. Graphene and hydroxyapatite self-assemble into homogeneous, free standing nanocomposite hydrogels for bone tissue engineering. Nanoscale, 2015, 7(17): 7992–8002

    Article  CAS  PubMed  Google Scholar 

  9. Moosavi R, Ramanathan S, Lee Y Y, Siew L K C, Afkhami A, Archunan G, Padmanabhan P, Gulyás B, Kakran M, Selvan S T. Synthesis of antibacterial and magneticnanocomposites by decorating graphene oxide surface with metal nanoparticles. RSC Advances, 2015, 5(93): 76442–76450

    Article  CAS  Google Scholar 

  10. Wei G, Zhang J T, **e L, Jandt K D. Biomimetic growth of hydroxyapatite on super water-soluble carbon nanotube-protein hybrid nanofibers. Carbon, 2011, 49(7): 2216–2226

    Article  CAS  Google Scholar 

  11. Wei G, Reichert J, Bossert J, Jandt K D. Novel biopolymeric template for the nucleation and growth of hydroxyapatite crystals based on self-assembled fibrinogen fibrils. Biomacromolecules, 2008, 9(11): 3258–3267

    Article  CAS  PubMed  Google Scholar 

  12. Wang J H, Wang H X, Wang Y Z, Li J F, Su Z Q, Wei G. Alternate layer-by-layer assembly of graphene oxide nanosheets and fibrinogen nanofibers on a silicon substrate for a biomimetic threedimensional hydroxyapatite scaffold. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2014, 2(42): 7360–7368

    Article  CAS  Google Scholar 

  13. Kaur B, Srivastava R, Satpati B, Kondepudi K K, Bishnoi M. Biomineralization of hydroxyapatite in silver ion-exchanged nanocrystalline ZSM-5 zeolite using simulated body fluid. Colloids and Surfaces. B, Biointerfaces, 2015, 135: 201–208

    Article  CAS  PubMed  Google Scholar 

  14. Yu W, Wang X X, Zhao J L, Tang Q G, Wang M L, Ning X W. Preparation and mechanical properties of reinforced hydroxyapatite bone cement with nano-ZrO2. Ceramics International, 2015, 41(9): 10600–11060

    Article  CAS  Google Scholar 

  15. Shen J, ** B, Qi Y C, Jiang Q Y, Gao X F. Carboxylated chitosan/silver-hydroxyapatite hybrid microspheres with improved antibacterial activity and cytocompatibility. Materials Science and Engineering C, 2017, 78: 589–597

    Article  CAS  PubMed  Google Scholar 

  16. Jadalannagari S, Deshmukh K, Ramanan S R, Kowshik M. Antimicrobial activity of hemocompatible silver doped hydroxyapatite nanoparticles synthesized by modified sol-gel technique. Applied Nanoscience, 2013, 4(2): 133–141

    Article  CAS  Google Scholar 

  17. Lin K L, Wu C T, Chang J. Advances in synthesis of calcium phosphate crystals with controlled size and shape. Acta Biomaterialia, 2014, 10(10): 4071–4102

    Article  CAS  PubMed  Google Scholar 

  18. Raucci M G, Giugliano D, Longo A, Zeppetelli S, Carotenuto G, Ambrosio L. Comparative facile methods for preparing graphene oxide-hydroxyapatite for bone tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2016, 11(8): 2204–2216

    Article  CAS  PubMed  Google Scholar 

  19. Santos C, Almeida M M, Costa M E. Morphological evolution of hydroxyapatite particles in the presence of different citrate: Calcium ratios. Crystal Growth & Design, 2015, 15(9): 4417–4426

    Article  CAS  Google Scholar 

  20. Zhao X Y, Zhu Y J, Chen F, Lu B Q, Wu J. Nanosheet-assembled hierarchical nanostructures of hydroxyapatite: Surfactant-free microwave-hydrothermal rapid synthesis, protein/DNA adsorption and pH-controlled release. CrystEngComm, 2013, 15(1): 206–212

    Article  CAS  Google Scholar 

  21. Fan Z J, Wang J Q, Wang Z F, Ran H Q, Li Y, Niu L Y, Gong P W, Liu B, Yang S R. One-pot synthesis of graphene/hydroxyapatite nanorod composite for tissue engineering. Carbon, 2014, 66: 407–416

    Article  CAS  Google Scholar 

  22. Fielding G A, Roy M, Bandyopadhyay A, Bose S. Antibacterial and biological characteristics of silver containing and strontium doped plasma sprayed hydroxyapatite coatings. Acta Biomaterialia, 2012, 8(8): 3144–3152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gao F, Xu C Y, Hu H T, Wang Q, Gao Y Y, Chen H, Guo Q N, Chen D N, Eder D. Biomimetic synthesis and characterization of hydroxyapatite/graphene oxide hybrid coating on Mg alloy with enhanced corrosion resistance. Materials Letters, 2015, 138: 25–28

    Article  CAS  Google Scholar 

  24. Liu H Y, ** P X, **e G Q, Shi Y J, Hou F P, Huang L, Chen F J, Zeng Z Z, Shao C W, Wang J. Simultaneous reduction and surface functionalization of graphene oxide for hydroxyapatite mineralization. Journal of Physical Chemistry C, 2012, 116(5): 3334–3341

    Article  CAS  Google Scholar 

  25. Baradaran S, Moghaddam E, Basirun W J, Mehrali M, Sookhakian M, Hamdi M, Moghaddam N M R, Alias Y. Mechanical properties and biomedical applications of a nanotube hydroxyapatite-reduced graphene oxide composite. Carbon, 2014, 69: 32–45

    Article  CAS  Google Scholar 

  26. Bharath G, Madhu R, Chen S M, Veeramani V, Balamurugan A, Mangalaraj D, Viswanathan C, Ponpandian N. Enzymatic electrochemical glucose biosensors by mesoporous 1D hydroxyapatite-on-2D reduced graphene oxide. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2015, 3(7): 1360–1370

    Article  CAS  Google Scholar 

  27. Li M, Liu Q, Jia Z J, Xu X C, Cheng Y, Zheng Y F, ** T F, Wei S C. Graphene oxide/hydroxyapatite composite coatings fabricated by electrophoretic nanotechnology for biological applications. Carbon, 2014, 67: 185–197

    Article  CAS  Google Scholar 

  28. Ma H B, Su W X, Tai Z X, Sun D F, Yan X B, Liu B, Xue Q J. Preparation and cytocompatibility of polylactic acid/hydroxyapatite/ graphene oxide nanocomposite fibrous membrane. Chinese Science Bulletin, 2012, 57(23): 3051–3058

    Article  CAS  Google Scholar 

  29. Zhu J T, Wong H M, Kwok Y K W, Tjong S C. Spark plasma sintered hydroxyapatite/graphite nanosheet and hydroxyapatite/ multiwalled carbon nanotube composites: Mechanical and in vitro cellular properties. Advanced Engineering Materials, 2011, 13(4): 336–341

    Article  CAS  Google Scholar 

  30. Rajesh R, Ravichandran D Y. Development of new graphene oxide incorporated tricomponent scaffolds with polysaccharides and hydroxyapatite and study of their osteoconductivity on MG-63 cell line for bone tissue engineering. RSC Advances, 2015, 5(51): 41135–41143

    Article  CAS  Google Scholar 

  31. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 2006, 27(15): 2907–2915

    Article  CAS  PubMed  Google Scholar 

  32. Zhang M F, Li Y Z, Su Z Q, Wei G. Recent advances in the synthesis and applications of graphene-polymer nanocomposites. Polymer Chemistry, 2015, 6(34): 6107–6124

    Article  CAS  Google Scholar 

  33. Chen F, Zhu Y J, Wang K W, Zhao K L. Surfactant-free solvothermal synthesis of hydroxyapatite nanowire/nanotube ordered arrays with biomimetic structures. CrystEngComm, 2011, 13(6): 1858–1863

    Article  CAS  Google Scholar 

  34. **ong G Y, Luo H L, Zuo G F, Ren K J, Wan Y Z. Novel porous graphene oxide and hydroxyapatite nanosheets-reinforced sodium alginate hybrid nanocomposites formedical applications. Materials Characterization, 2015, 107: 419–425

    Article  CAS  Google Scholar 

  35. Shen J, ** B, Jiang Q Y, Hu Y M, Wang X Y. Morphologycontrolled synthesis of fluorapatite nano/microstructures via surfactant-assisted hydrothermal process. Materials & Design, 2016, 97: 204–212

    Article  CAS  Google Scholar 

  36. Roach P, Eglin D, Rohde K, Perry C C. Modern biomaterials: A review-bulk properties and implications of surface modifications. Journal of Materials Science. Materials in Medicine, 2007, 18(7): 1263–1277

    Article  CAS  PubMed  Google Scholar 

  37. Mehrali M, Moghaddam E, Seyed S S F, Baradaran S, Mehrali M, Latibari S T, Cornelis M H S, Kadri N A, Zandi K, Abu O N A. Mechanical and in vitro biological performance of graphene nanoplatelets reinforced calcium silicate composite. PLoS One, 2014, 9(9): e106802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yu X Q, Wang Z P, Su Z Q, Wei G. Design, fabrication, and biomedical applications of bioinspired peptide-inorganic nanomaterial hybrids. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2017, 5(6): 1130–1142

    Article  CAS  Google Scholar 

  39. Li C X, Born A K, Schweizer T, Zenobi-Wong M, Cerruti M, Mezzenga R. Amyloid-hydroxyapatite bone biomimetic composites. Advanced Materials, 2014, 26(20): 3207–3212

    Article  CAS  PubMed  Google Scholar 

  40. Liu Y, Huang J, Li H. Synthesis of hydroxyapatite-reduced graphite oxide nanocomposites for biomedical applications: Oriented nucleation and epitaxial growth of hydroxyapatite. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2013, 1(13): 1826

    Article  CAS  Google Scholar 

  41. Zhang Q, Liu Y, Zhang Y, Li H X, Tan Y N, Luo L L, Duan J H, Li K Y, Banks C E. Facile and controllable synthesis of hydroxyapatite/ graphene hybrid materials with enhanced sensing performance towards ammonia. Analyst (London), 2013, 00: 1–8

    Google Scholar 

  42. Ren J, Zhang X G, Chen Y. Graphene accelerates osteoblast attachment and biomineralization. Carbon Letters, 2017, 22: 42–44

    Google Scholar 

  43. Zhao X N, Zhang P P, Chen Y T, Su Z Q, Wei G. Recent advances in the fabrication and structure-specific applications of graphenebased inorganic hybrid membranes. Nanoscale, 2015, 7(12): 5080–5093

    Article  CAS  Google Scholar 

  44. Wen T, Wu X L, Liu M C, **ng Z H, Wang X K, Xu A W. Efficient capture of strontium from aqueous solutions using graphene oxidehydroxyapatite nanocomposites. Dalton Transactions (Cambridge, England), 2014, 43(20): 7464–7472

    Article  CAS  Google Scholar 

  45. Li D P, Liu T J, Yu X Q, Wu D, Su Z Q. Fabrication of graphenebiomacromolecule hybrid materials for tissue engineering application. Polymer Chemistry, 2017, 8(30): 4309–4321

    Article  CAS  Google Scholar 

  46. Zhang L, Liu W W, Yue C G, Zhang T H, Li P, **ng Z W, Chen Y. A tough graphene nanosheet/hydroxyapatite composite with improved in vitro biocompatibility. Carbon, 2013, 61: 105–115

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 21201142 and 11502158) and Southwest University of Science and Technology Researching Project (Grant No. 14tdsc03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan Shen or Bo **.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, P., Shen, J., Zou, G. et al. Biomimetic mineralization and cytocompatibility of nanorod hydroxyapatite/graphene oxide composites. Front. Chem. Sci. Eng. 12, 798–805 (2018). https://doi.org/10.1007/s11705-018-1708-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-018-1708-9

Keywords

Navigation