Log in

Quantitative structure–property relationship (QSPR) modeling for evaluating fluorescence attributes across various aromatic heterocyclic compounds with ve-degree-based Sombor indices

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Aromatic heterocyclic compounds have become highly sought-after for their diverse medicinal and biological uses. Their synthesis and adaptability have led to a surge in research interest, as they play a crucial role in the creation of over 90% of groundbreaking medications. These compounds bridge the gap between biology and chemistry, driving significant scientific progress. Heterocycles are utilized across various fields, including pharmaceutical chemistry and biochemistry. This article introduces the development of quantitative structure–property relationship models using ve-degree-based Sombor indices. Some linear regression models have been fitted that can be used for prediction purposes. Specifically, these models aim to predict the fluorescence properties of aromatic heterocyclic species based on their structural features. Such models provide researchers with the ability to estimate the fluorescence behavior of new molecules without the need for experimental measurements. It is noted that the maximum excitation wavelength \({(\lambda }_{\mathbf{e}\mathbf{x}})\) on the Sombor index type four (ST4) has the highest coefficient of determinations (\({R}^{2}=0.872\)) and the smallest residual standard error (\(s=53.673\)). Thus, the physical property \({\lambda }_{\mathbf{e}\mathbf{x}}\) can be predicted by the sombor index ST4 at the best level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

QSPR:

Quantitative structure–property relationship

QSAR:

Quantitative structure–activity relationships

QSTR:

Quantitative structure–toxicity relationships

\({\lambda }_{\mathbf{e}\mathbf{m}}\) :

Maximum emission wavelength

\({\lambda }_{\mathbf{e}\mathbf{x}}\) :

Maximum excitation wavelength

G :

Graph

V :

Vertex

E :

Edge

M :

Matrix

\(N(\nu )\) :

Open neighborhood

\(N[\nu ]\) :

Closed neighborhood

\(\text{SO}(G)\) :

Sombor index of a graph \(G\)

\({n}_{x}\) :

\(\text{ve}\)-Degrees of vertices \(x\)

\({n}_{y}\) :

\(\text{ve}\)-Degrees of vertices \(y\)

ST1 :

The Sombor index type one

ST2 :

The Sombor index type two

ST3 :

The Sombor index type three

ST4 :

The Sombor index type four

ST5 :

The Sombor index type five

ST6 :

The Sombor index type six

\(r\) :

Correlation coefficients

\({R}^{2}\) :

Coefficients of determination

\(u\) :

Random error

\(X\) :

Independent variable

\(Y\) :

Dependent variable

\(\alpha\) :

The intercept of the regression

β :

Slope of the regression

S :

Standard errors

F :

F-Statistics

P :

p-Values

References

  • Ahmad K, Sheikh A, Rafi M (2020) Scholarly research in library and information science: an analysis based on ISI web of science. Perform Meas Metrics 21(1):18–32

    Article  Google Scholar 

  • Baur WH (1971) The prediction of bond length variations in silicon-oxygen bonds. Am Mineral J Earth Planet Mater 56(9–10):1573–1599

    CAS  Google Scholar 

  • Cyrański MK (2005) Energetic aspects of cyclic pi-electron delocalization: evaluation of the methods of estimating aromatic stabilization energies. Chem Rev 105(10):3773–3811

    Article  PubMed  Google Scholar 

  • Elvidge JA, Jackman LM (1961) 181. Studies of aromaticity by nuclear magnetic resonance spectroscopy. Part I. 2-Pyridones and related systems. J Chem Soc 859–866

  • García-Domenech R, Gálvez J, de Julián-Ortiz JV, Pogliani L (2008) Some new trends in chemical graph theory. Chem Rev 108(3):1127–1169

    Article  PubMed  Google Scholar 

  • Geuenich D, Hess K, Köhler F, Herges R (2005) Anisotropy of the induced current density (ACID), is a general method to quantify and visualize electronic delocalization. Chem Rev 105(10):3758–3772

    Article  CAS  PubMed  Google Scholar 

  • Gozalbes R, Doucet JP, Derouin F (2002) Application of topological descriptors in QSAR and drug design: history and new trends. Curr Drug Targ Infect Disord 2(1):93–102

    Article  CAS  Google Scholar 

  • Hakeem A, Ullah A, Zaman S (2023) Computation of some important degree-based topological indices for γ-graphyne and zigzag graphene nanoribbon. Mol Phys 121(14):e2211403

    Article  Google Scholar 

  • Harayama T (2006) Synthetic studies on aromatic heterocyclic compounds. Yakugaku Zasshi J Pharm Soc Jpn 126(8):543–564

    Article  CAS  Google Scholar 

  • Hayat S, Asmat F (2023) Sharp bounds on the generalized multiplicative first Zagreb index of graphs with application to QSPR modeling. Mathematics 11(10):2245

    Article  Google Scholar 

  • Hayat S, Khan S (2021) Quality testing of spectrum-based valency descriptors for polycyclic aromatic hydrocarbons with applications. J Mol Struct 1228:129789

    Article  CAS  Google Scholar 

  • Hayat S, Khan S, Imran M, Liu JB (2020a) Quality testing of distance-based molecular descriptors for benzenoid hydrocarbons. J Mol Struct 1222:128927

    Article  CAS  Google Scholar 

  • Hayat S, Khan S, Khan A, Imran M (2020b) Distance-based topological descriptors for measuring the π-electronic energy of benzenoid hydrocarbons with applications to carbon nanotubes. Math Method Appl Sci. https://doi.org/10.1002/mma.6668

    Article  Google Scholar 

  • Hehre WJ, Ditchfield R, Radom L, Pople JA (1970) Molecular orbital theory of the electronic structure of organic compounds. V. Molecular theory of bond separation. J Am Chem Soc 92(16):4796–4801

    Article  CAS  Google Scholar 

  • Hui ZH, Rauf A, Naeem M, Aslam A, Saleem AV (2023a) Quality testing analysis of ve-degree-based entropies by using benzene derivatives. Int J Quantum Chem 123(17):e27146

    Article  CAS  Google Scholar 

  • Hui ZH, Naeem M, Rauf A, Aslam A (2023b) Predictive ability of physicochemical properties of antiemetic drugs using degree-based entropies. Int J Quantum Chem. https://doi.org/10.1002/qua.27131

    Article  Google Scholar 

  • Hui ZH, Naeem M, Rauf A, Aslam A (2023c) Estimating the physicochemical properties of antiemetics using degree-based topological descriptors. Mol Phys 121(5):e2189491

    Article  Google Scholar 

  • Ibrahim M, Zahra N, Siddiqui MK (2022) On ve-degree and ev-degree-based topological indices for the series of benzenoid graphs. Polycycl Aromat Compd 42(7):4726–4735

    Article  CAS  Google Scholar 

  • Jianbo H, Tingting Z, Yong**g C, Yuanyuan Z, Weiqing Y, Menglin M (2018) Study on the relationship between fluorescence properties and structure of substituted 8-hydroxyquinoline zinc complexes. J Fluoresc 28:1121–1126

    Article  CAS  PubMed  Google Scholar 

  • Kistiakowsky GB, Ruhoff JR, Smith HA, Vaughan WE (1936) Heats of organic reactions. IV. Hydrogenation of some dienes and of benzene. J Am Chem Soc 58(1):146–153

    Article  CAS  Google Scholar 

  • Krygowski TM, Szatylowicz H (2015) Aromaticity: what does it mean? ChemTexts 1:1–10

    Article  CAS  Google Scholar 

  • Krygowski TM, Cyranski MK, Czarnecki Z, Häfelinger G, Katritzky AR (2000) Aromaticity: a theoretical concept of immense practical importance. Tetrahedron 56(13):1783–1796

    Article  CAS  Google Scholar 

  • Liqin L, Shahzad K, Rauf A, Tchier F, Aslam A (2023) Metric and fault-tolerant metric dimension for GeSbTe superlattice chemical structure. PLoS ONE 18(11):e0290411

    Article  PubMed  PubMed Central  Google Scholar 

  • Malik MYH, Binyamin MA, Hayat S (2022) Correlation ability of degree-based topological indices for physicochemical properties of polycyclic aromatic hydrocarbons with applications. Polycyclic Aromat Compd 42(9):6267–6281

    Article  CAS  Google Scholar 

  • Naeem M, Rauf A, Mumtaz MW, Ameen N (2023a) Predictive ability of physiochemical properties of benzene derivatives using ve-degree of end vertices-based entropy. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2023.2269419

    Article  PubMed  Google Scholar 

  • Naeem M, Rauf A, Akhtar MS, Iqbal Z (2023b) QSPR modeling with curvilinear regression on the reverse entropy indices for the prediction of physicochemical properties of benzene derivatives. Polycycl Aromat Compd 44:1–18

    Google Scholar 

  • Pauling L, Sherman J (1933) The nature of the chemical bond. VI. The calculation from thermochemical data of the energy of resonance of molecules among several electronic structures. J Chem Phys 1(8):606–617

    Article  CAS  Google Scholar 

  • Prabhu S, Murugan G, Cary M, Arulperumjothi M, Liu JB (2020) On certain distance and degree-based topological indices of Zeolite LTA frameworks. Mater Res Express 7(5):055006

    Article  CAS  Google Scholar 

  • Radom L (1974) Ab initio molecular orbital calculations on anions. determination of gas-phase acidities. J Chem Soc Chem Commun 10:403–404

    Article  Google Scholar 

  • Rauf A, Naeem M, Hanif A (2023) Quantitative structure–properties relationship analysis of Eigen-value-based indices using COVID-19 drugs structure. Int J Quantum Chem 123(4):e27030

    Article  CAS  PubMed  Google Scholar 

  • Sondheimer F (1963) Recent advances in the chemistry of large-ring conjugated systems. Pure Appl Chem 7(2–3):363–388

    Article  CAS  Google Scholar 

  • Todeschini R, Consonni V (2009) Molecular descriptors for chemoinformatics: volume I: alphabetical listing/volume II: appendices, references. John Wiley & Sons

  • Ullah A, Zaman S, Hamraz A, Saeedi G (2022) Network-based modeling of the molecular topology of fuchsine acid dye concerning some irregular molecular descriptors. J Chem. https://doi.org/10.1155/2022/8131276

    Article  Google Scholar 

  • Zaman S, Jalani M, Ullah A, Saeedi G (2022) Structural analysis and topological characterization of sudoku nanosheet. J Math. https://doi.org/10.1155/2022/5915740

    Article  Google Scholar 

  • Zaman S, Jalani M, Ullah A, Ahmad W, Saeedi G (2023a) Mathematical analysis and molecular descriptors of two novel metal-organic models with chemical applications. Sci Rep 13(1):5314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaman S, Jalani M, Ullah A, Ali M, Shahzadi T (2023b) On the topological descriptors and structural analysis of cerium oxide nanostructures. Chem Pap 77(5):2917–2922

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Rauf.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rauf, A., Nazir, A. & Rahman, J. Quantitative structure–property relationship (QSPR) modeling for evaluating fluorescence attributes across various aromatic heterocyclic compounds with ve-degree-based Sombor indices. Chem. Pap. (2024). https://doi.org/10.1007/s11696-024-03539-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11696-024-03539-7

Keywords

Navigation