Log in

Determination of nitrite in food samples on MnO2 decorated carbonaceous-glass fiber modified glassy carbon by differential pulse voltammetry

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Nitrite is widely used as an additive in the food industry. Nitrite can form carcinogenic N-nitrosamines by reacting with secondary amines and amides in the stomach and can interfere with the oxygen transport system in the body. Therefore, it is important to detect nitrite residues from a variety of environments, including food samples. This study presents the determination of nitrite using a novel sensitive electrochemical sensor based on MnO2 decorated coal tar pitch-coated glass fiber scaffold. Characterizations of sensor platforms were performed using electrochemical, spectroscopic, and microscopic techniques. Response of the carbonaceous electrode using differential pulse voltammetry for nitrite in the presence of uric acid and resorcinol was found linear in the range of 0.5–25 μM. The detection limit of nitrite was 2.5 nM (S/N ratio = 3). The method was successfully applied for the detection of nitrite in food samples including juice, pickle, pasteurized milk, and tap water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Almeida MG, Serra A, Silveira CM, Moura JJG (2010) Nitrite biosensing via selective enzymes–a long but promising route. Sensors 10:11530–11555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamental and applications. Willey, New York

    Google Scholar 

  • Blanco C, Santamarı́a R, Bermejo J, Menéndez R (2000) A comparative study of air-blown and thermally treated coal-tar pitches. Carbon 4:517–523

    Article  Google Scholar 

  • Chambrion P, Bertau R, Ehrburger P (1995) Effect of polar components on the physico-chemical properties of coal tar. Fuel 74:1284–1290

    Article  CAS  Google Scholar 

  • Chamsi AY, Fogg AG (1988) Oxidative flow injection amperometric determination of nitrite at an electrochemically pre-treated glassy carbon electrode. Analyst 113:1723–1727

    Article  CAS  Google Scholar 

  • Chen X, Ruan C, Kong J, Deng J (1999) Amperometric determination of nitrite based on reaction with 3-mercaptopropanoic acid. Anal Chim Acta 382:189–197

    Article  CAS  Google Scholar 

  • Chen ZP, Zhang ZY, Qu CL, Pan DW, Chen LX (2012) Highly sensitive label-free colorimetric sensing of nitrite based on etching of gold nanorods. Analyst 137:5197–5200

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, Yang C, Zeng W, Oyama M, Pu W, Zhang J (2007) Electrochemical determination of nitrite using a gold nanoparticles-modified glassy carbon electrode prepared by the seed-mediated growth technique. Anal Sci 23:1421–1425

    Article  CAS  PubMed  Google Scholar 

  • Domı́nguez A, Blanco C, Santamarı́a R, Granda M, Blanco CG, Menéndez R (2004) Monitoring coal-tar pitch composition changes during air-blowing by gas chromatography. J Chromatogr A 1026:231–238

    Article  PubMed  Google Scholar 

  • Erkal A, Üstündağ İ, Yavuz S, Üstündağ Z (2015) An Electrochemical application of MnO2 decorated graphene supported glassy carbon ultrasensitive electrode: Pb2+ and Cd2+ analysis of seawater samples. J Electrochem Soci 162:H213–H219

    Article  CAS  Google Scholar 

  • Erkal A, Aşık İ, Yavuz S, Kariper IA, Üstündağ Z (2016) Biosensor application of carbonaceous nanocoil material: preparation, characterization, and determination of dopamine and uric acid in the presence of ascorbic acid. J Electrochem Soci 163:H269–H277

    Article  CAS  Google Scholar 

  • Ghanei-Motlagh M, Taher MA (2018) A novel electrochemical sensor based on silver/halloysite nanotube/molybdenum disulfide nanocomposite for efficient nitrite sensing. Biosens Bioelectron 109(279):285

    Google Scholar 

  • Güleşen M, Erkal Aytemur A, Yavuz S, Akbulut A, Kariper IA, Üstündağ İ (2019) Evaluation of nanomanganese decorated typha tassel carbonaceous electrode: preparation, characterization, and simultaneous determination of Cd2+ and Pb2+. Chem Pap 73:2869–2878

    Article  Google Scholar 

  • Hallaj R, Salimi A, Kavosi B, Mansouri G (2016) Highly sensitive and ultra-selective amperometric nitrite sensor using cyclometalated Rh(III)-complex/CNTs modified glassy carbon electrode integrated with flow injection analysis. Sens Actuators, B Chem 233:107–119

    Article  CAS  Google Scholar 

  • Jedličková V, Paluch Z, Alušı́k Š (2002) Determination of nitrate and nitrite by high-performance liquid chromatography in human plasma. J Chromatogr B 780:193–197

    Article  Google Scholar 

  • Jiang J, Fan W, Du X (2014) Nitride electrochemical biosensing based on coupled graphene and gold nanoparticles. Biosens Bioelectron 51:343–348

    Article  CAS  PubMed  Google Scholar 

  • Kuzu-Çelik G, Üzdürmez AF, Erkal A, Kılıç E, Solak AO, Üstündağ Z (2016) 3,8-Diaminobenzo[c]cinnoline derivatived graphene oxide modified graphene oxide sensor for the voltammetric determination of Cd2+ and Pb2+. Electrocatalysis 7:207–214

    Article  Google Scholar 

  • Li P, Ding Y, Wang A, Zhou L, Wei S, Zhou Y, Tang Y, Chen Y, Cai C, Lu T (2013) Self-assembly of tetrakis (3-trifluoromethylphenoxy) phthalocyaninato cobalt(II) on multiwalled carbon nanotubes and their amperometric sensing application for nitrite. ACS Appl Mater Interfaces 5:2255–2260

    Article  CAS  PubMed  Google Scholar 

  • Luo X, Killard AJ, Smyth MR (2007) Nanocomposite and nanoporous polyaniline conducting polymers exhibit enhanced catalysis of nitrite. Chem Eur J 13:2138–2143

    Article  CAS  PubMed  Google Scholar 

  • Luo X, Pan J, Pan K, Yu Y, Zhong A, Wei S, Li J, Shi J, Li X (2015) An electrochemical sensor for hydrazine and nitrite based on graphene–cobalt hexacyanoferrate nanocomposite: toward environment and food detection. J Electroanal Chem 745:80–87

    Article  CAS  Google Scholar 

  • Mehmeti E, Stanković DM, Hajrizi A, Kalcher K (2016) The use of graphene nanoribbons as efficient electrochemical sensing material for nitrite determination. Talanta 159:34–39

    Article  CAS  PubMed  Google Scholar 

  • Mirvish SS (1995) Role of N-nitroso compounds (NOC) and N-nitrosation in etiology of gastric, esophageal, nasopharyngeal and bladder cancer and contribution to cancer of known exposures to NOC. Cancer Lett 93:17–48

    Article  CAS  PubMed  Google Scholar 

  • Mo R, Wang X, Yuan Q, Yan X, Su T, Feng Y, Lv L, Zhou C, Hong P, Sun S, Wang Z, Li C (2018) Electrochemical determination of nitrite by Au nanoparticle/graphene-chitosan modified electrode. Sensors 18(7):1986

    Article  PubMed  PubMed Central  Google Scholar 

  • Palanisamy S, Thirumalraj B, Chen S-M (2016) A novel amperometric nitrite sensor based on screen printed carbon electrode modified with graphite/β-cyclodextrin composite. J Electroanal Chem 760:97–104

    Article  CAS  Google Scholar 

  • Pham XH, Li CA, Han KN, Huynh-Nguyen BC, Li TH, Ko E, Seong GH (2014) Electrochemical detection of nitrite using urchin-like palladium nanostructures on carbon nanotube thin film electrodes. Sens Actuators, B Chem 193:815–822

    Article  CAS  Google Scholar 

  • Radhakrishnan S, Krishnamoorthy K, Sekar C, Wilson J, Kim SJ (2014) A highly sensitive electrochemical sensor for nitrite detection based on Fe2O3 nanoparticles decorated reduced graphene oxide nanosheets. Appl Catal B 148–149:22–28

    Article  Google Scholar 

  • Rosca V, Duca M, Goot MTD, Koper MTM (2009) Nitrogen cycle electrocatalysis. Chem Rev 109:2209–2244

    Article  CAS  PubMed  Google Scholar 

  • Sayed SY, Fereiro JA, Yan H, McCreery RL, Bergren AJ (2012) Charge transport in molecular electronic junctions: compression of the molecular tunnel barrier in the strong coupling regime. Proc Natl Acad Sci USA 109:11498–11503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun WL, Zhang S, Liu HZ, ** LT, Kong JL (1999) Electrocatalytic reduction of nitrite at a glassy carbon electrode surface modified with palladium(II)-substituted Keggin type heteropolytungstate. Anal Chim Acta 388:103–110

    Article  CAS  Google Scholar 

  • Üstündağ İ, Erkal A (2017) Determination of dopamine in the presence of ascorbic acid on digitonin-doped coal tar pitch carbonaceous electrode. Sens Mater 29:85–94

    Google Scholar 

  • Üstündağ Z, İsbir Turan AA, Solak AO, Kılıç E, Avseven A (2009) Analysis of 2-benzo[c]cinnoline nanofilm at the gold surface. Instrum Sci Technol 37:284–302

    Article  Google Scholar 

  • Üstündağ İ, Erkal A, Koralay T, Kadıoğlu YK, Jeon S (2016) Gold nanoparticle included graphene oxide modified electrode: picomole detection of metal ions in seawater by strip** voltammetry. J Anal Chem 71:685–695

    Article  Google Scholar 

  • Vaculíková L, Plevová E, Vallová S, Koutník I (2011) Characterization and differentiation of kaolinites from selected czech deposits using infrared spectroscopy and differential thermal analysis. Acta Geodynamica Et Geomaterialia 8:59–67

    Google Scholar 

  • Wang P, Mai Z, Dai Z, Li Y, Zou X (2009) Construction of Au nanoparticles on choline chloride modified glassy carbon electrode for sensitive detection of nitrite. Biosens Bioelectron 24:3242–3247

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Diao P, Zhang Q (2012a) Dual detection strategy for electrochemical analysis of glucose and nitrite using a partitionally modified electrode. Analyst 137:145–152

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Liao F, Guo T, Yang S, Zeng C (2012b) Synthesis of crystalline silver nanoplates and their application for detection of nitrite in foods. J Electroanal Chem 664:135–138

    Article  CAS  Google Scholar 

  • Wei Y, Fang F, Yang W, Guo H, Niu X, Sun L (2015) Preparation of a nitrite electrochemical sensor based on polyaniline/graphene-ferrocenecarboxylic acid composite film modified glass carbon electrode and its analytical application. J Braz Chem Soc 26:2003–2013

    CAS  Google Scholar 

  • WHO (2018) http://www.who.int/water_sanitation_health/dwq/chemicals/nitratenitrite-2ndadd.pdf

  • Yavuz S, Erkal A, Kariper İA, Solak AO, Jeon S, Mülazımoğlu İE, Üstündağ Z (2016) Carbonaceous Materials – 12: a novel highly sensitive graphene oxide based carbon electrode: preparation, characterization and heavy metal analysis in food samples. Food Anal Methods 9:322–331

    Article  Google Scholar 

  • Ye D, Luo L, Ding Y, Chen Q, Liu X (2011) A novel nitrite sensor based on graphene/polypyrrole/chitosan nanocomposite modified glassy carbon electrode. Analyst 136:4563–4569

    Article  CAS  PubMed  Google Scholar 

  • Yeter E, Şahin S, Çaglayan MO, Üstündağ Z (2021) An electrochemical label-free DNA impedimetric sensor with AuNP modified glass fiber/ carbonaceous electrode for the detection of HIV-1 DNA. Chem Pap 75:77–87

    Article  CAS  Google Scholar 

  • Yilmaz-Alhan B, Çelik G, Caglayan MO, Şahin S, Üstündağ Z (2022) Determination of nitrite on manganese dioxide doped reduced graphene oxide modified glassy carbon by differential pulse voltammetry. Chem Pap 76:4919–4925

    Article  CAS  Google Scholar 

  • Yin H, Zhang Y, Dong H, Liu L, Wang X, Zhang Y, Xu M, Zhou Y (2022) Self-calibrating electrochemical sensors based on uniformly dispersed Ag nanoclusters in nitrogen-doped carbon sheets for determination of nitrite. ACS Appl Nano Mater 5:9737–9746

    Article  CAS  Google Scholar 

  • Yu C, Guo J, Gu H (2010) Electrocatalytical oxidation of nitrite and its determination based on Au@Fe3O4 nanoparticles. Electroanalysis 22:1005–1011

    Article  CAS  Google Scholar 

  • Yun M, Choe JE, You J-M, Ahmed MS, Lee K, Üstündağ Z, Jeon S (2015) High catalytic activity of electrochemically reduced graphene compositetoward electrochemical sensing of Orange II. Food Chem 169:114–119

    Article  CAS  PubMed  Google Scholar 

  • Zen JM, Kumar AS, Wang HF (2000) A dual electrochemical sensor for nitrite and nitric oxide. Analyst 125:2169–2172

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Yuan R, Chai YQ, Zhang Y, Chen SH (2012) A simple strategy based on lanthanum–multiwalled carbon nanotube nanocomposites for simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite. Sens Actuators, B Chem 166–167:601–607

    Article  Google Scholar 

  • Zhang D, Ma H, Chen Y, Pang H, Yu Y (2013) Amperometric detection of nitrite based on dawson-type vanodotungstophosphate and carbon nanotubes. Anal Chim Acta 792:35–44

    Article  CAS  PubMed  Google Scholar 

  • Zhang HJ, Qi SD, Dong YL, Chen XJ, Xu YY, Ma YH, Chen XG (2014) A sensitive colorimetric method for the determination of nitrite in water supplies, meat and dairy products using ionic liquid-modified methyl red as a colour reagent. Food Chem 151:429–434

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Cheng F, Zhang M, Liu P, Chen M, Cai Z (2016) Template-assisted preparation of Au nanowires and their application in nitrite ions sensing. J Electroanal Chem 773:1–6

    Article  CAS  Google Scholar 

  • Zhou S, Wu H, Wu Y, Shi H, Feng X, Jiang S, Chen J, Song W (2014) Hemi-ordered nanoporous carbon electrodematerial for highly selective determination of nitrite in physiological and environmental systems. Thin Solid Films 564:406–411

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İlknur Üstündağ.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1096 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Üstündağ, İ. Determination of nitrite in food samples on MnO2 decorated carbonaceous-glass fiber modified glassy carbon by differential pulse voltammetry. Chem. Pap. 77, 4613–4623 (2023). https://doi.org/10.1007/s11696-023-02811-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-023-02811-6

Keywords

Navigation