Log in

Citric acid treatment maintains fresh-cut sweet potatoes storage quality by reducing browning levels and increasing antioxidant capacity

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Fresh-cut sweet potatoes are popular among consumers for their freshness and convenience. However, rapid browning and oxidative damage under stress significantly degrade their storage quality. This study aims to evaluate the effects of citric acid (CA) treatment on maintaining the quality of fresh-cut sweet potatoes during storage and to explore the underlying mechanisms. Fresh-cut sweet potatoes were immersed in 1% (w/v) CA for 10 min, with water treatment as the control (CK), and stored at 4 °C for 8 d. Physicochemical parameters were evaluated every 2 d. After 8 d of storage, CA-treated samples exhibited significantly lower total colony count (3.34 lg CFU g−1), soluble sugar content (1.52%), and lignin content (2.62 OD280 g−1) compared to the CK group (P < 0.05), and better maintained color values. Additionally, CA treatment inhibited the increase in browning-related enzyme activities (phenylalanine deaminase, polyphenol oxidase, peroxidase) and the accumulation of browning products (total phenolics, soluble quinones), resulting in a browning index 8.15% lower than the CK group at the end of storage. The CA-treated fresh-cut sweet potatoes also exhibited lower malondialdehyde content (0.58 µmol g−1) and lipoxygenase activity (3.19 U g−1), while showing higher activities of antioxidant enzymes such as catalase and ascorbate peroxidase, and enhanced free radical scavenging capacity, indicating that CA treatment helps mitigate cutting-induced oxidative stress. In conclusion, our findings highlight the significant potential of CA treatment in preserving the storage quality of fresh-cut sweet potatoes and provide new insights into its regulatory mechanisms.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that has been used is confdential.

References

  1. Y. Li, L. Zhang, L. Zhang, G. Nawaz, C.X. Zhao, J. Zhang, Q.H. Cao, T.T. Dong, T. Xu, Exogenous melatonin alleviates browning of fresh-cut sweetpotato by enhancing anti-oxidative process. Sci. Hortic. 297, 110937 (2022). https://doi.org/10.1016/j.scienta.2022.110937

    Article  CAS  Google Scholar 

  2. FAOSTAT. Statistics division of food and agriculture organization of the United Nations. (2022). http://www.fao.org/faostat/en/#data

  3. T.M.R. de Albuquerque, K.B. Sampaio, E.L. de Souza, Sweet potato roots: unrevealing an old food as a source of health promoting bioactive compounds—a review. Trends. Food Sci. Tech. 85, 277–286 (2019). https://doi.org/10.1016/j.tifs.2018.11.006

    Article  CAS  Google Scholar 

  4. X.J. Li, Y.Q. Jiang, Y. Liu, L. Li, F.H. Liang, X.D. Wang, D.D. Li, N. Pan, X.H. Li, X.Z. Yang, T. Yao, Effects of short-term high oxygen pre-stimulation on browning resistance and low-temperature tolerance of fresh-cut potatoes in supercooled storage. Food Bioprocess Technol. 17(3), 709–721 (2024). https://doi.org/10.1007/s11947-023-03157-3

    Article  CAS  Google Scholar 

  5. W.Z. Hu, Y.G. Guan, Y.R. Ji, X.Z. Yang, Effect of cutting styles on quality, antioxidant activity, membrane lipid peroxidation, and browning in fresh-cut potatoes. Food Biosci. 44, 101435 (2021). https://doi.org/10.1016/j.fbio.2021.101435

    Article  CAS  Google Scholar 

  6. B. Wen, D. Li, D. Tang, Z. Huang, P. Kedbanglai, Z.B. Ge, X.F. Du, S. Supapvanich, Effects of simultaneous ultrasonic and cysteine treatment on antibrowning and physicochemical quality of fresh-cut lotus roots during cold storage. Postharvest Biol. Tec. 168, 111294 (2020). https://doi.org/10.1016/j.postharvbio.2020.111294

    Article  CAS  Google Scholar 

  7. N. Fukuoka, M. Miyata, T. Hamada, E. Takeshita, Histochemical observations and gene expression changes related to internal browning in tuberous roots of sweet potato (Ipomea batatas). Plant Sci. 274, 476–484 (2018). https://doi.org/10.1016/j.plantsci.2018.07.004

    Article  CAS  PubMed  Google Scholar 

  8. R.F. Dibanda, E.P. Akdowa, Q.M. Tongwa, Effect of microwave blanching on antioxidant activity, phenolic compounds and browning behaviour of some fruit peelings. Food Chem. 302, 125308 (2020). https://doi.org/10.1016/j.foodchem.2019.125308

    Article  CAS  Google Scholar 

  9. X.Y. Ru, N. Tao, Y.Y. Feng, Q.Q. Li, Q.G. Wang, A novel anti-browning agent 3-mercapto-2-butanol for inhibition of fresh-cut potato browning. Postharvest Biol. Tec. 170, 111324 (2020). https://doi.org/10.1016/j.postharvbio.2020.111324

    Article  CAS  Google Scholar 

  10. D. Wang, L.K. Chen, Y. Ma, M. Zhang, Y.W. Zhao, X.Y. Zhao, Effect of UV-C treatment on the quality of fresh-cut lotus (Nelumbo nucifera Gaertn.) root. Food Chem. 278, 659–664 (2019). https://doi.org/10.1016/j.foodchem.2018.11.102

    Article  CAS  PubMed  Google Scholar 

  11. T.T. Bai, J.X. Li, A. Murtaza, A. Iqbal, L.J. Zhu, J. Zhang, B. Zhang, X.Y. Xu, S.Y. Pan, W.F. Hu, Scavenging of ROS after eugenol treatment as mechanism of slowing down membrane lipid metabolism to maintain the surface color of fresh-cut yam. Food Bioprocess Tech. 15(8), 1821–1835 (2022). https://doi.org/10.1007/s11947-022-02833-0

    Article  CAS  Google Scholar 

  12. T.T. Wang, T. Yan, J.K. Shi, Y.M. Sun, Q.G. Wang, Q.Q. Li, The stability of cell structure and antioxidant enzymes are essential for fresh-cut potato browning. Food Res. Int. 164, 112449 (2023). https://doi.org/10.1016/j.foodres.2022.112449

    Article  CAS  PubMed  Google Scholar 

  13. H. Song, A.R. Jang, S. Lee, S.Y. Lee, Application of sodium alginate-based edible coating with citric acid to improve the safety and quality of fresh-cut melon (Cucumis melo L.) during cold storage. Food Sci. Biotechnol. 33, 1741–1750 (2024). https://doi.org/10.1007/s10068-023-01475-y

    Article  CAS  PubMed  Google Scholar 

  14. Y.M. Jiang, L.T. Pen, J.R. Li, Use of citric acid for shelf life and quality maintenance of fresh-cut Chinese water chestnut. J. Food Eng. 63(3), 325–328 (2004). https://doi.org/10.1016/j.jfoodeng.2003.08.004

    Article  Google Scholar 

  15. S.N. Marghmaleki, S.M.H. Mortazavi, H. Saei, A. Mostaan, The effect of alginate-based edible coating enriched with citric acid and ascorbic acid on texture, appearance and eating quality of apple fresh-cut. Int. J. Fruit Sci. 1(21), 40–51 (2020). https://doi.org/10.1080/15538362.2020.1856018

    Article  Google Scholar 

  16. G. Sortino, A. Allegra, A. Gallotta, F. Saletta, R. Passafume, R. Gaglio, P. Inglese, V. Farina, Efects of combinational use of controlled atmosphere, cold storage and edible coating applications on shelf life and quality attributes of fresh-cut persimmon fruit. Chem. Biol. Technol. Ag. 9, 60 (2022). https://doi.org/10.1186/s40538-022-00324-0

    Article  CAS  Google Scholar 

  17. S.C. Sgroppo, L.E. Vergara, M.D. Tenev, Effects of sodium metabisulphite and citric acid on the shelf life of fresh cut sweet potatoes. Span. J. Agric. Res. 8(3), 686–693 (2010). https://doi.org/10.5424/sjar/2010083-1266

    Article  Google Scholar 

  18. P. Tsouvaltzis, J.K. Brecht, Inhibition of enzymatic browning of fresh-cut potato by immersion in citric acid is not solely due to pH peduction of the solution. J. Food Process. Pres. 41(2), e12829 (2017). https://doi.org/10.1111/jfpp.12829

    Article  CAS  Google Scholar 

  19. C. Chen, W.Z. Hu, Y.B. He, A.L. Jiang, R.D. Zhang, Effect of citric acid combined with UV-C on the quality of fresh-cut apples. Postharvest Biol. Tec. 111, 126–131 (2016). https://doi.org/10.1016/j.postharvbio.2015.08.005

    Article  CAS  Google Scholar 

  20. M.R. Ansorena, M.R. Moreira, S.I. Roura, Combined effect of ultrasound, mild heat shock and citric acid to retain greenness, nutritional and microbiological quality of minimally processed broccoli (Brassica oleracea L.): an optimization study. Postharvest Biol. Tec. 94, 1–13 (2014). https://doi.org/10.1016/j.postharvbio.2014.02.017

    Article  CAS  Google Scholar 

  21. P. Rocculi, F.G. Galindo, F. Mendoza, L. Wadsö, S. Romani, M.D. Rosa, I. Sjöholm, Effects of the application of anti-browning substances on the metabolic activity and sugar composition of fresh-cut potatoes. Postharvest Biol. Tec. 43(1), 151–157 (2007). https://doi.org/10.1016/j.postharvbio.2006.08.002

    Article  CAS  Google Scholar 

  22. T.J. Jiang, Effect of alginate coating on physicochemical and sensory qualities of button mushrooms (Agaricus bisporus) under a high oxygen modified atmosphere. Postharvest Biol. Technol. 76, 91–97 (2013). https://doi.org/10.1016/j.postharvbio.2012.09.005

    Article  CAS  Google Scholar 

  23. Y.J. Sun, Z.D. Shi, Y.P. Jiang, X.H. Zhang, X.A. Li, F.G. Li, Effects of preharvest regulation of ethylene on carbohydrate metabolism of apple (Malus domestica Borkh cv. Starkrimson) fruit at harvest and during storage. Sci. Hortic. 276, 109748 (2021). https://doi.org/10.1016/j.scienta.2020.109748

    Article  CAS  Google Scholar 

  24. D.Y. Xu, C. Chen, F.H. Zhou, C.H. Liu, M.X. Tian, X.J. Zeng, A.L. Jiang, Vacuum packaging and ascorbic acid synergistically maintain the quality and flavor of fresh-cut potatoes. LWT-Food Sci. Technol. 162, 113356 (2022). https://doi.org/10.1016/j.lwt.2022.113356

    Article  CAS  Google Scholar 

  25. F.H. Zhou, D.Y. Xu, S.G. **ong, C. Chen, C.H. Liu, A.L. Jiang, Transcriptomic and metabolomic profiling reveal the mechanism underlying the inhibition of wound healing by ascorbic acid in fresh-cut potato. Food Chem. 410, 135444 (2023). https://doi.org/10.1016/j.foodchem.2023.135444

    Article  CAS  PubMed  Google Scholar 

  26. P.D. **e, Y.Y. Yang, W. Oyom, T.T. Su, Y.B. Tang, Y. Wang, Y.C. Li, D. Prushy, B. Yang, Chitooligosaccharide accelerated wound healing in potato tubers by promoting the deposition of suberin polyphenols and lignin at wounds. Plant Physiol. Bioch. 199, 107714 (2023). https://doi.org/10.1016/j.plaphy.2023.107714

    Article  CAS  Google Scholar 

  27. Y.F. Pan, L. Chen, L.L. Pang, X.T. Chen, X.Y. Jia, X.G. Li, Ultrasound treatment inhibits browning and improves antioxidant capacity of fresh-cut sweet potato during cold storage. Rsc Adv. 10(16), 9193–9202 (2020). https://doi.org/10.1039/C9RA06418D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. F.H. Zhou, A.L. Jiang, K. Feng, S.T. Gu, D.Y. Xu, W.H. Hu, Effect of methyl jasmonate on wound healing and resistance in fresh-cut potato cubes. Postharvest Biol. Tec. 157, 110958 (2019). https://doi.org/10.1016/j.postharvbio.2019.110958

    Article  CAS  Google Scholar 

  29. Y.X. Wang, F.H. Zhou, J.H. Zuo, Q.L. Zheng, L.P. Gao, Q. Wang, A.L. Jiang, (2018) Pre-storage treatment of mechanically-injured green pepper (Capsicum annuum L.) fruit with putrescine reduces adverse physiological responses. Postharvest Biol. Technol. 145, 239–246 (2018). https://doi.org/10.1016/j.postharvbio.2018.08.002

    Article  CAS  Google Scholar 

  30. S.T. Gu, D.Y. Xu, F.H. Zhou, K. Feng, C. Chen, A.L. Jiang, Repairing ability and mechanism of methyl jasmonate and salicylic acid on mechanically damaged sweet cherries. Sci. Hortic. 292, 110567 (2022). https://doi.org/10.1016/j.scienta.2021.110567

    Article  CAS  Google Scholar 

  31. X.W. Hua, T.T. Li, C. Wu, D.D. Zhou, G.J. Fan, X.J. Li, K.P. Cong, Z.C. Yan, Z.H. Wu, Novel physical treatments (pulsed light and cold plasma) improve the quality of postharvest apricots after long-distance simulated transportation. Postharvest Biol. Tec. 194, 112098 (2022). https://doi.org/10.1016/j.postharvbio.2022.112098

    Article  CAS  Google Scholar 

  32. C.H. Sommers, X.T. Fan, A.P. Handel, K. Baxendale Sokorai, Effect of citric acid on the radiation resistance of Listeria monocytogenes and frankfurter quality factors. Meat Sci. 63(3), 407–415 (2003). https://doi.org/10.1016/S0309-1740(02)00100-6

    Article  CAS  PubMed  Google Scholar 

  33. V. Pilizota, G.M. Sapers, Novel browning inhibitor formulation for fresh-cut apples. J. Food Sci. 69(4), 140–143 (2004). https://doi.org/10.1111/j.1365-2621.2004.tb06354.x

    Article  Google Scholar 

  34. A.K. Dovene, L. Wang, S.U. Bokhary, M.P. Madebo, Y.H. Zheng, P. **, Effect of cutting styles on quality and antioxidant activity of stored fresh-cut sweet potato (Ipomoea batatas L.) cultivars. Foods 8(12), 674 (2019). https://doi.org/10.3390/foods8120674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. M.D. Ferreira, S.A. Sargent, J.K. Brecht, C.K. Chandler, Strawberry fruit resistance to simulated handling. Sci. Agr. 65, 490–495 (2008). https://doi.org/10.1590/S0103-90162008000500007

    Article  Google Scholar 

  36. S.G. **ong, F.H. Zhou, A.L. Jiang, L. Yang, W.Z. Hu, Ethanol vapor ameliorates chilling injury and maintains postharvest quality by increasing antioxidant capacity of hardy kiwifruit (Actinidia arguta). Sci. Hortic. 327, 112796 (2024). https://doi.org/10.1016/j.scienta.2023.112796

    Article  CAS  Google Scholar 

  37. M.H. Bata Gouda, C.J. Zhang, S.J. Peng, X.X. Kong, Y.R. Chen, H. Li, X.R. Li, H.B. Luo, L.J. Yu, Combination of sodium alginate-based coating with L-cysteine and citric acid extends the shelf-life of fresh-cut lotus root slices by inhibiting browning and microbial growth. Postharvest Biol. Tec. 175, 111502 (2021). https://doi.org/10.1016/j.postharvbio.2021.111502

    Article  CAS  Google Scholar 

  38. M. Chiumarelli, C.C. Ferrari, C.I.G.L. Sarantópoulos, M.D. Hubinger, Fresh cut “Tommy Atkins” mango pre-treated with citric acid and coated with cassava (Manihot esculenta Crantz) starch or sodium alginate. Innov. Food Sci. Emerg. 12(3), 381–387 (2011). https://doi.org/10.1016/j.ifset.2011.02.006

    Article  CAS  Google Scholar 

  39. R.B. Waghmare, U.S. Annapure, Combined effect of chemical treatment and/or modified atmosphere packaging (MAP) on quality of fresh-cut papaya. Postharvest Biol. Tec. 85, 147–153 (2013). https://doi.org/10.1016/j.postharvbio.2013.05.010

    Article  CAS  Google Scholar 

  40. C. Yang, T. Chen, B.R. Shen, S.X. Sun, H.Y. Song, D. Chen, W.P. **, Citric acid treatment reduces decay and maintains the postharvest quality of peach (Prunus persica L.) fruit. Food Sci. Nutr. 7(11), 3635–3643 (2019). https://doi.org/10.1002/fsn3.1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. S.G. **ong, X.S. Sun, M.X. Tian, D.Y. Xu, A.L. Jiang, 1-Methylcyclopropene treatment delays the softening of Actinidia arguta fruit by reducing cell wall degradation and modulating carbohydrate metabolism. Food Chem. 411, 135485 (2023). https://doi.org/10.1016/j.foodchem.2023.135485

    Article  CAS  PubMed  Google Scholar 

  42. S.S. Nassarawa, Z.S. Luo, Effect of light irradiation on sugar, phenolics, and GABA metabolism on postharvest grape (Vitis vinifera L.) during storage. Food Bioprocess Technol. 15(12), 2789–2802 (2022). https://doi.org/10.1007/s11947-022-02919-9

    Article  CAS  Google Scholar 

  43. J.H. Chen, Y.H. Xu, Y. Yi, W.F. Hou, L.M. Wang, Y.W. Ai, H.X. Wang, T. Min, Regulations and mechanisms of 1-methylcyclopropene treatment on browning and quality of fresh-cut lotus (Nelumbo nucifera Gaertn.) root slices. Postharvest Biol. Tec. 185, 111782 (2022). https://doi.org/10.1016/j.postharvbio.2021.111782

    Article  CAS  Google Scholar 

  44. Y. Chen, Y.J. Zhang, G. Nawaz, C.X. Zhao, Y.X. Li, T.T. Dong, M.K. Zhu, X.M. Du, L. Zhang, Z.Y. Li, T. Xu, Exogenous melatonin attenuates post-harvest decay by increasing antioxidant activity in wax apple (Syzygium samarangense). Front. Plant Sci. 11, 569779 (2020). https://doi.org/10.3389/fpls.2020.569779

    Article  PubMed  PubMed Central  Google Scholar 

  45. P.T. Chen, J.X. Li, Q.Q. Luo, J.K. Zong, J.L. Gao, R.H. Qin, H.R. Ran, T.F. Zhao, Y.F. Fu, Transcriptome and physiological analysis revealed the difference of resistance to fresh-cut browning among sweetpotato genotypes. Postharvest Biol. Tecnnol. 205, 112504 (2023). https://doi.org/10.1016/j.postharvbio.2023.112504

    Article  CAS  Google Scholar 

  46. L. Wang, H. Zhang, P. **, X.F. Guo, Y. Li, C. Fan, J. Wang, Y.H. Zheng, Enhancement of storage quality and antioxidant capacity of harvested sweet cherry fruit by immersion with β-aminobutyric acid. Postharvest Biol. Technol. 118, 71–78 (2016). https://doi.org/10.1016/j.postharvbio.2016.03.023

    Article  CAS  Google Scholar 

  47. S.S. Nassarawa, T. Belwal, M. Javed, Z.S. Luo, Influence of the red LEDs light irradiation on the quality and chemical attributes of postharvest table grape (Vitis vinifera L.) during storage. Food Bioprocess Technol. 15(6), 1436–1447 (2022). https://doi.org/10.1007/s11947-022-02824-1

    Article  CAS  Google Scholar 

  48. Y.F. Lin, M.Y. Chen, H.T. Lin, M.S. Lin, Y.C. Hung, Y.X. Lin, Y.H. Chen, H.W.M.A. Ritenour, Phomopsis longanae-induced pericarp browning and disease development of longan fruit can be alleviated or aggravated by regulation of ATP-mediated membrane lipid metabolism. Food Chem. 269, 644–651 (2018). https://doi.org/10.1016/j.foodchem.2018.07.060

    Article  CAS  PubMed  Google Scholar 

  49. J. **e, Z.Y. Qin, J.L. Pan, J. Li, X. Li, H.E. Khoo, X.H. Dong, Melatonin treatment improves postharvest quality and regulates reactive oxygen species metabolism in “Feizixiao” litchi based on principal component analysis. Front. Plant Sci. 13, 965345 (2022). https://doi.org/10.3389/fpls.2022.965345

    Article  PubMed  PubMed Central  Google Scholar 

  50. R. Mittler, Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7(9), 405–410 (2002). https://doi.org/10.1016/S1360-1385(02)02312-9

    Article  CAS  PubMed  Google Scholar 

  51. K. Robards, P.D. Prenzler, G. Tucker, P. Swatsitang, W. Glover, Phenolic compounds and their role in oxidative processes in fruits. Food Chem. 66(4), 401–436 (1999). https://doi.org/10.1016/S0308-8146(99)00093-X

    Article  CAS  Google Scholar 

  52. Y.Y. Sun, H.J. Sun, M.L. Luo, X. Zhou, Q. Zhou, B.D. Wei, S.C. Cheng, S.J. Ji, Membrane lipid metabolism in relation to core browning during ambient storage of “Nanguo” pears. Postharvest Biol. Technol. 169, 111288 (2020). https://doi.org/10.1016/j.postharvbio.2020.111288

    Article  CAS  Google Scholar 

  53. D.Y. Xu, F.H. Zhou, S.T. Gu, K. Feng, W.Z. Hu, J. Zhang, X.S. Sun, X.W. Liang, A.L. Jiang, 1-Methylcyclopropene maintains the postharvest quality of hardy kiwifruit (Actinidia aruguta). J. Food Meas. Charact. 15(4), 3036–3044 (2021). https://doi.org/10.1016/j.foodchem.2022.132190

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Major Project of Gansu Province (21ZD4NA016-02), and the Fundamental Research Funds for the Central Universities (0919-140005).

Author information

Authors and Affiliations

Authors

Contributions

Wen Li: conceptualization, data curation, formal analysis, investigation, methodology, visualization, writing-original draft, writing-review & editing. Si-Guo **ong: data curation, formal analysis, supervision, writing-review & editing. Cheng-Hui Liu: supervision, methodology & writing-review. Ai-Li Jiang: supervision, funding acquisition.

Corresponding author

Correspondence to Ai-Li Jiang.

Ethics declarations

Conflict of interest

The authors declare that there is no confict of interests regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., **ong, SG., Liu, CH. et al. Citric acid treatment maintains fresh-cut sweet potatoes storage quality by reducing browning levels and increasing antioxidant capacity. Food Measure (2024). https://doi.org/10.1007/s11694-024-02742-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11694-024-02742-0

Keywords

Navigation