Log in

Effects of glycerol on the freezing behaviors and physicochemical properties of pork patties under freeze-thaw cycles

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The effects of glycerol on the freezing curves, ice crystal morphology, and physicochemical properties such as water-holding capacity, colour, pH, lipid and protein oxidation of pork patties under freeze-thaw cycles were investigated in this work. The results showed that glycerol decreased freezing point and accelerated freezing rate of pork patties, causing small and evenly distributed ice crystals, which were beneficial to alleviate the destruction of the organization of pork patties. Also, under freeze-thaw cycles, the addition of glycerol delayed the increases in the thawing/cooking loss, L* values, thiobarbituric acid reactive substance levels, metmyoglobin content, and carbonyl group content, as well as the decreases in the pH, a* and b* values of pork patties. Summarily, the results indicated that glycerol alleviated the damage to the organization of pork patties under freeze-thaw cycles, which alleviated the oxidation of lipids and proteins, ultimately favoring to maintain the quality attributes. Therefore, the present work is attractive to the meat frozen preservation industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Zhang, P. Ertbjerg, On the origin of thaw loss: relationship between freezing rate and protein denaturation. Food Chem. 299, 125104 (2019). https://doi.org/10.1016/j.foodchem.2019.125104

    Article  CAS  PubMed  Google Scholar 

  2. S. Srinivasan, H.O. Hultin, Chemical, physical, and functional properties of cod proteins modified by a nonenzymic free-radical-generating system. J. Agric. Food Chem. 45, 310–320 (1997). https://doi.org/10.1021/jf960367g

    Article  CAS  Google Scholar 

  3. C.H.Z. Kong, N. Hamid, T. Liu, V. Saro**i, Effect of antifreeze peptide pretreatment on ice crystal size, drip loss, texture, and volatile compounds of frozen carrots. J. Agric. Food Chem. 64, 4327–4335 (2016). https://doi.org/10.1021/acs.jafc.6b00046

    Article  CAS  PubMed  Google Scholar 

  4. Y. **e, K. Zhou, B. Chen, Y. Ma, C. Tang, P. Li et al., Mechanism of low-voltage electrostatic fields on the water-holding capacity in frozen beef steak: insights from myofilament lattice arrays. Food Chem. 428, 136786 (2023). https://doi.org/10.1016/j.foodchem.2023.136786

    Article  CAS  PubMed  Google Scholar 

  5. N. Walayat, W. Tang, X. Wang, M. Yi, L. Guo, Y. Ding et al., Effective role of konjac oligosaccharide against oxidative changes in silver carp proteins during fluctuated frozen storage. Food Hydrocoll. 131, 107761 (2022). https://doi.org/10.1016/j.foodhyd.2022.107761

    Article  CAS  Google Scholar 

  6. J. Tian, N. Walayat, Y. Ding, J. Liu, The role of trifunctional cryoprotectants in the frozen storage of aquatic foods: recent developments and future recommendations. Compr. Rev. Food Sci. Food Saf. 21, 321–339 (2022). https://doi.org/10.1111/1541-4337.12865

    Article  CAS  PubMed  Google Scholar 

  7. X. Chen, J. Wu, X. Li, F. Yang, L. Yu, X. Li et al., Investigation of the cryoprotective mechanism and effect on quality characteristics of surimi during freezing storage by antifreeze peptides. Food Chem. 371, 131054 (2022). https://doi.org/10.1016/j.foodchem.2021.131054

    Article  CAS  PubMed  Google Scholar 

  8. Chinese Standards, Food additive: Glycerol. GB 29950 – 2013 (2013). National Food Safety Standard for Uses of Food Additives. (in Chinese)

  9. S.R. Kanatt, S.P. Chawla, R. Chander, A. Sharma, Development of shelf-stable, ready-to-eat (RTE) shrimps (Penaeus indicus) using γ-radiation as one of the hurdles. LWT. 39, 621–626 (2006). https://doi.org/10.1016/j.lwt.2005.03.016

    Article  CAS  Google Scholar 

  10. I. Semenoglou, G. Dimopoulos, T. Tsironi, P. Taoukis, Mathematical modelling of the effect of solution concentration and the combined application of pulsed electric fields on mass transfer during osmotic dehydration of sea bass fillets. Food Bioprod. Process. 121, 186–192 (2020). https://doi.org/10.1016/j.fbp.2020.02.007

    Article  CAS  Google Scholar 

  11. C. Liu, J. Wan, Y. Zhou, K. Hu, Q. Zhu, P. Tang et al., Proteome profile of glycrol-mediated salt-reduction cured meat reveals the formation mechanism of eating quality. Food Chem. 382, 132395 (2022). https://doi.org/10.1016/j.foodchem.2022.132395

    Article  CAS  PubMed  Google Scholar 

  12. J.W. Park, Cryoprotection of muscle proteins by carbohydrates and polyalcohols. J. Aquat. Food Prod. 3, 23–41 (1995). https://doi.org/10.1300/J030v03n03_03

    Article  Google Scholar 

  13. K. Cen, C. Huang, X. Yu, C. Gao, Y. Yang, X. Tang et al., Quinoa protein Pickering emulsion: a promising cryoprotectant to enhance the freeze-thaw stability of fish myofibril gels. Food Chem. 407, 135139 (2023). https://doi.org/10.1016/j.foodchem.2022.135139

    Article  CAS  PubMed  Google Scholar 

  14. L. Huang, J. Wan, W. Huang, P. Rayas-Duarte, G. Liu, Effects of glycerol on water properties and steaming performance of prefermented frozen dough. J. Cereal Sci. 53, 19–24 (2011). https://doi.org/10.1016/j.jcs.2010.07.006

    Article  CAS  Google Scholar 

  15. B. Wang, F. Li, N. Pan, B. Kong, X. **a, Effect of ice structuring protein on the quality of quick-frozen patties subjected to multiple freeze-thaw cycles. Meat Sci. 172, 108335 (2021). https://doi.org/10.1016/j.meatsci.2020.108335

    Article  CAS  PubMed  Google Scholar 

  16. Y. Cao, L. Zhao, Q. Huang, S. **ong, T. Yin, Z. Liu, Water migration, ice crystal formation, and freeze-thaw stability of silver carp surimi as affected by inulin under different additive amounts and polymerization degrees. Food Hydrocoll. 124, 107267 (2022). https://doi.org/10.1016/j.foodhyd.2021.107267

    Article  CAS  Google Scholar 

  17. F. Li, Q. Zhong, B. Kong, B. Wang, N. Pan, X. **a, Deterioration in quality of quick-frozen pork patties induced by changes in protein structure and lipid and protein oxidation during frozen storage. Food Res. Int. 133, 109142 (2020). https://doi.org/10.1016/j.foodres.2020.109142

    Article  CAS  PubMed  Google Scholar 

  18. E. Turan, A. Şimşek, Effects of lyophilized black mulberry water extract on lipid oxidation, metmyoglobin formation, color stability, microbial quality and sensory properties of beef patties stored under aerobic and vacuum packaging conditions. Meat Sci. 178, 108522 (2021). https://doi.org/10.1016/j.meatsci.2021.108522

    Article  CAS  PubMed  Google Scholar 

  19. H. Zhang, X. Li, H. Kang, X. Peng, Chitosan nanoparticles effectively improved quality stability of pork patties subjected to multiple freeze–thaw cycles. Meat Sci. 196, 109029 (2023). https://doi.org/10.1016/j.meatsci.2022.109029

    Article  CAS  PubMed  Google Scholar 

  20. N. Walayat, Z. **ong, H. **ong, H.M. Moreno, Q. Li, A. Nawaz et al., The effectiveness of egg white protein and β-cyclodextrin during frozen storage: functional, rheological and structural changes in the myofibrillar proteins of Culter alburnus. Food Hydrocoll. 105, 105842 (2020). https://doi.org/10.1016/j.foodhyd.2020.105842

    Article  Google Scholar 

  21. A. Stępień, M. Witczak, T. Witczak, Sorption properties, glass transition and state diagrams for pumpkin powders containing maltodextrins. LWT. 134, 110192 (2020). https://doi.org/10.1016/j.lwt.2020.110192

    Article  CAS  Google Scholar 

  22. Y.L. Chen, B.S. Pan, Freezing tilapia by airblast and liquid nitrogen – freezing point and freezing rate. Int. J. Food Sci. Technol. 30, 167–173 (1995). https://doi.org/10.1111/j.1365-2621.1995.tb01368.x

    Article  CAS  Google Scholar 

  23. Y. **e, K. Zhou, B. Chen, S. Al-Dalali, C. Li, Y. Wang et al., Synergism effect of low voltage electrostatic field and antifreeze agents on enhancing the qualities of frozen beef steak: perspectives on water migration and protein aggregation. Innovative Food Sci. Emerg. Technol. 84, 103263 (2023). https://doi.org/10.1016/j.ifset.2022.103263

    Article  CAS  Google Scholar 

  24. E. Xanthakis, A. Le-Bail, H. Ramaswamy, Development of an innovative microwave assisted food freezing process. Innovative Food Sci. Emerg. Technol. 26, 176–181 (2014). https://doi.org/10.1016/j.ifset.2014.04.003

    Article  Google Scholar 

  25. B. Zhang, X.L. Zhang, C.L. Shen, S.G. Deng, Understanding the influence of carrageenan oligosaccharides and xylooligosaccharides on ice-crystal growth in peeled shrimp (Litopenaeus vannamei) during frozen storage. Food Funct. 9, 4394–4403 (2018). https://doi.org/10.1039/C8FO00364E

    Article  CAS  PubMed  Google Scholar 

  26. B. Zhang, J.L. Zhao, S.J. Chen, X.L. Zhang, W.Y. Wei, Influence of trehalose and alginate oligosaccharides on ice crystal growth and recrystallization in whiteleg shrimp (Litopenaeus vannamei) during frozen storage with temperature fluctuations. Int. J. Refrig. 99, 176–185 (2019). https://doi.org/10.1016/j.ijrefrig.2018.11.015

    Article  CAS  Google Scholar 

  27. P. Bao, L. Chen, Y. Wang, Y. Hu, Y. Wang, H. Fang et al., Quality of frozen porcine Longissimus lumborum muscles injected with L-arginine and L-lysine solution. Meat Sci. 179, 108530 (2021). https://doi.org/10.1016/j.meatsci.2021.108530

    Article  CAS  PubMed  Google Scholar 

  28. L. Mohammed, L.A. Marquez-Curtis, J.A.W. Elliott, Cryopreservation of human cerebral microvascular endothelial cells with glycerol. Cryobiology. 113, 104551 (2023). https://doi.org/10.1016/j.cryobiol.2023.104551

    Article  CAS  PubMed  Google Scholar 

  29. Z. Zhu, Q. Zhou, D.-W. Sun, Measuring and controlling ice crystallization in frozen foods: a review of recent developments. Trends Food Sci. Tech. 90, 13–25 (2019). https://doi.org/10.1016/j.tifs.2019.05.012

    Article  CAS  Google Scholar 

  30. C.T. Lung, C.K. Chang, F.C. Cheng, C.Y. Hou, M.H. Chen, S.P. Santoso et al., Effects of pulsed electric field-assisted thawing on the characteristics and quality of Pekin duck meat. Food Chem. 390, 133137 (2022). https://doi.org/10.1016/j.foodchem.2022.133137

    Article  CAS  PubMed  Google Scholar 

  31. E.M. Hartmann, R.F. Garcia, V.A.F.G. Gazola, H.C. Barrena, R.B. Bazotte, Investigation of glycemia recovery with oral administration of glycerol, pyruvate, and l-lactate during long-term, insulin-induced hypoglycemia. J. Diabetes Complicat. 24, 301–305 (2010). https://doi.org/10.1016/j.jdiacomp.2009.07.003

    Article  Google Scholar 

  32. H. Medić, I. Djurkin Kušec, J. Pleadin, L. Kozačinski, B. Njari, B. Hengl et al., The impact of frozen storage duration on physical, chemical and microbiological properties of pork. Meat Sci. 140, 119–127 (2018). https://doi.org/10.1016/j.meatsci.2018.03.006

    Article  CAS  PubMed  Google Scholar 

  33. N. Pan, C. Dong, X. Du, B. Kong, J. Sun, X. **a, Effect of freeze-thaw cycles on the quality of quick-frozen pork patty with different fat content by consumer assessment and instrument-based detection. Meat Sci. 172, 108313 (2021). https://doi.org/10.1016/j.meatsci.2020.108313

    Article  CAS  PubMed  Google Scholar 

  34. S. Ali, W. Zhang, N. Rajput, M.A. Khan, C.B. Li, G.H. Zhou, Effect of multiple freeze–thaw cycles on the quality of chicken breast meat. Food Chem. 173, 808–814 (2015). https://doi.org/10.1016/j.foodchem.2014.09.095

    Article  CAS  PubMed  Google Scholar 

  35. G.R. Trout, Variation in myoglobin denaturation and dolor of dooked beef, pork, and Turkey meat as influenced by pH, sodium chloride, sodium tripolyphosphate, and cooking temperature. J. Food Sci. 54, 536–540 (1989). https://doi.org/10.1111/j.1365-2621.1989.tb04644.x

    Article  CAS  Google Scholar 

  36. Z. Wang, Z. He, X. Gan, H. Li, Interrelationship among ferrous myoglobin, lipid and protein oxidations in rabbit meat during refrigerated and superchilled storage. Meat Sci. 146, 131–139 (2018). https://doi.org/10.1016/j.meatsci.2018.08.006

    Article  CAS  PubMed  Google Scholar 

  37. X. Chen, X. Shi, X. Cai, F. Yang, L. Li, J. Wu et al., Ice-binding proteins: a remarkable ice crystal regulator for frozen foods. Crit. Rev. Food Sci. Nutr. 61, 3436–3449 (2021). https://doi.org/10.1080/10408398.2020.1798354

    Article  CAS  PubMed  Google Scholar 

  38. S. Benjakul, F. Bauer, Biochemical and physicochemical changes in catfish (Silurus glanis Linne) muscle as influenced by different freeze–thaw cycles. Food Chem. 72, 207–217 (2001). https://doi.org/10.1016/S0308-8146(00)00222-3

    Article  CAS  Google Scholar 

  39. Y.Y. Qin, J.Y. Yang, H.B. Lu, S.S. Wang, J. Yang, X.C. Yang et al., Effect of chitosan film incorporated with tea polyphenol on quality and shelf life of pork meat patties. Int. J. Biol. Macromol. 61, 312–316 (2013). https://doi.org/10.1016/j.ijbiomac.2013.07.018

    Article  CAS  PubMed  Google Scholar 

  40. X. Peng, C. Liu, B. Wang, L. Kong, R. Wen, H. Zhang et al., Hygroscopic properties of whey protein hydrolysates and their effects on water retention in pork patties during repeated freeze–thaw cycles. LWT. 184, 114984 (2023). https://doi.org/10.1016/j.lwt.2023.114984

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was funded by National Natural Science Foundation of China (NO. 32372354) and Natural Science Foundation of Anhui Province (NO. 2208085MC82) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cunliu Zhou.

Ethics declarations

Disclosure

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, H., Fan, X., Gao, X. et al. Effects of glycerol on the freezing behaviors and physicochemical properties of pork patties under freeze-thaw cycles. Food Measure (2024). https://doi.org/10.1007/s11694-024-02728-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11694-024-02728-y

Keywords

Navigation