Log in

Soy protein-based films incorporated with co-encapsulated cinnamon and paprika oleoresins

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Considering growing food demand and waste concerns, sustainable packaging solutions have been explored. Biomacromolecules, like proteins and lipids, offer promising alternatives to conventional polymers for food packaging components. This study investigates the use of oleoresins to enhance the functionality of soy protein isolate (SPI) films. Physical-mechanical properties and antifungal activity against Penicillium paneum were assessed. Cinnamon and paprika oleoresins were incorporated in both free and encapsulated forms (using solid lipid microparticles, SLMs), resulting in orange-colored films. Films containing SLMs exhibited reduced light transmittance (over 50%), potentially protecting photosensitive products from light degradation. Key film properties like moisture content, solubility in water, and water vapor permeability remained unchanged. The thermal curves between 20 and 100 ºC showed no glass transition events. While tensile strength decreased (from 4.83 MPa to 1.80 MPa), the presence of both SLMs and free oleoresins significantly delayed the growth of P. paneum, suggesting potential antifungal activity. The films offer combined barrier and antimicrobial properties, making them a promising sustainable alternative for food preservation. Further optimization efforts could focus on balancing mechanical properties with desired functionalities for real-world applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

5. References

  1. Y. Zhong, P. Godwin, Y. **, H. **ao, Adv. Industrial Eng. Polym. Res. (2020). https://doi.org/10.1016/j.aiepr.2019.11.002

    Article  Google Scholar 

  2. J. Wu, G. Song, R. Huang, Y. Yan, Q. Li, X. Guo, X. Shi, Y. Tian, J. Wang, S. Wang, Food Chem. (2023). https://doi.org/10.1016/j.foodchem.2023.135871

    Article  PubMed  Google Scholar 

  3. T.M.A.R.D. Vedove, B.C. Maniglia, C.C. Tadini, J. Food Eng. (2021). https://doi.org/10.1016/j.jfoodeng.2020.110274

    Article  Google Scholar 

  4. P. Tongnuanchan, S. Benjakul, T. Prodpran, K. Nilsuwan, Food Hydrocolloids (2015) https://doi.org/10.1016/j.foodhyd.2015.02.025

  5. C.G. Otoni, R.J. Avena-Bustillos, H.M.C. Azeredo, M.V. Lorevice, M.R. Moura, L.H.C. Mattoso, T.H. McHugh, Compr. Rev. Food Sci. Food Saf. (2017). https://doi.org/10.1111/1541-4337.12281

    Article  PubMed  Google Scholar 

  6. H.M.C. Azeredo, C.G. Otoni, L.H.C. Mattoso, (2022) https://doi.org/10.1016/j.crfs.2022.09.008

  7. M.A. Rojas-Graü, R. Soliva-Fortuny, O. Martín-Belloso, (2009) https://doi.org/10.1016/j.tifs.2009.05.002

  8. V.N. Enujiugha, A.M. Oyinloye, Encyclopedia of Food Chemistry (Elsevier, 2019), pp. 478–482. https://doi.org/10.1016/B978-0-08-100596-5.21477-7

  9. H. Tian, G. Guo, X. Fu, Y. Yao, L. Yuan, A. **ang, Int. J. Biol. Macromol. (2018). https://doi.org/10.1016/j.ijbiomac.2018.08.110

    Article  PubMed  Google Scholar 

  10. B.G. Erdem, S. Kaya, Food Chem. (2022). https://doi.org/10.1016/j.foodchem.2021.130709

    Article  PubMed  Google Scholar 

  11. I. dos Santos Paglione, M.V. Galindo, J.A.S. de Medeiros, F. Yamashita, I.D. Alvim, C.R. Ferreira, L.S. Grosso, M.A. Sakanaka, Shirai, Food Packag Shelf Life. (2019). https://doi.org/10.1016/j.fpsl.2019.100419

    Article  Google Scholar 

  12. S. Galus, Food Hydrocoll. 85 (2018). https://doi.org/10.1016/j.foodhyd.2018.07.026

  13. C.G. Otoni, R.J. Avena-Bustillos, C.W. Olsen, C. Bilbao-Sáinz, T.H. McHugh, Food Hydrocoll (2016) https://doi.org/10.1016/j.foodhyd.2016.01.012

  14. T. Thi Nguyen, B.-T.T. Pham, H. Nhien Le, L.G. Bach, C.N.H. Thuc, Food Packag Shelf Life. (2022). https://doi.org/10.1016/j.fpsl.2022.100830

    Article  Google Scholar 

  15. L. Marangoni Júnior, S. de Gonçalves, R.G. da Silva, J.T. Martins, A.A. Vicente, R.M.V. Alves, R.P. Vieira, Food Hydrocoll. (2022). https://doi.org/10.1016/j.foodhyd.2022.107746

    Article  Google Scholar 

  16. J. Bonilla, P.J.A. Sobral, J. Appl. Polym. Sci. (2017). https://doi.org/10.1002/app.44467

    Article  Google Scholar 

  17. S. Ganiari, E. Choulitoudi, V. Oreopoulou, Trends Food Sci. Technol. (2017). https://doi.org/10.1016/j.tifs.2017.08.009

    Article  Google Scholar 

  18. A.M. Bakry, S. Abbas, B. Ali, H. Majeed, M.Y. Abouelwafa, A. Mousa, L. Liang, Compr. Rev. Food Sci. Food Saf. (2016). https://doi.org/10.1111/1541-4337.12179

    Article  PubMed  Google Scholar 

  19. N.J. Zuidam, E. Shimoni, Encapsulation Technologies for Active Food Ingredients and Food Processing (Springer, New York, 2010), pp. 3–29. https://doi.org/10.1007/978-1-4419-1008-0_2

    Book  Google Scholar 

  20. J.A. Figueiredo, C.R. de Silva, M.F. Souza Oliveira, L.B. Norcino, P.H. Campelo, D.A. Botrel, S.V. Borges, Trends Food Sci. Technol. (2022). https://doi.org/10.1016/j.tifs.2021.12.026

    Article  PubMed  Google Scholar 

  21. F.R. Procopio, M.C. Ferraz, B.N. Paulino, P.J. Amaral, M.D. Sobral, Hubinger, Trends Food Sci Technol (2022) https://doi.org/10.1016/j.tifs.2022.02.010

  22. F. Shahidi, A. Hossain, J. Food Bioactives. (2018). https://doi.org/10.31665/JFB.2018.3149

    Article  Google Scholar 

  23. F.R. Procopio, M.C. Ferraz, L. do Prado-Silva, B.N. Paulino, A.S. Sant’Ana, G.M. Pastore, P.J. Sobral, M.D. Hubinger, Food Bioproc Tech (2022) https://doi.org/10.1007/s11947-022-02918-w

  24. L. Paravisini, E. Guichard, in Flavour, (John Wiley & Sons, Chichester, UK, 2016) pp. 208–234. https://doi.org/10.1002/9781118929384.ch9

  25. F.R. Procopio, S. Klettenhammer, G. Ferrentino, M. Scampicchio, P.J. Amaral, M.D. Sobral, Hubinger, Food Bioproc Tech (2023) https://doi.org/10.1007/s11947-023-03058-5

  26. P.D. de Santos, L.V. Siqueira, C.C. Tadini, C.S. Favaro-Trindade, Processes (2023) https://doi.org/10.3390/pr11030876

  27. F.R. Procopio, V.B. Oriani, B.N. Paulino, L. Prado-Silva, G.M. Pastore, A.S. Sant’Ana, M.D. Hubinger, Food Research International (2018) https://doi.org/10.1016/j.foodres.2018.07.026

  28. J. Bonilla, L. Atarés, M. Vargas, A. Chiralt, Food Hydrocoll. (2012). https://doi.org/10.1016/j.foodhyd.2011.03.015

    Article  Google Scholar 

  29. A. Aguirre, R. Borneo, A.E. León, Food Biosci (2013) https://doi.org/10.1016/j.fbio.2012.12.001

  30. K. dos Santos Caetano, N. Almeida Lopes, T.M. Haas Costa, A. Brandelli, E. Rodrigues, S. Hickmann, F. Flôres, Cladera-Olivera, Food Packag Shelf Life (2018) https://doi.org/10.1016/j.fpsl.2018.03.006

  31. P.J.A. Sobral, F.C. Menegalli, M.D. Hubinger, M.A. Roques, Food Hydrocoll. (2001). https://doi.org/10.1016/S0268-005X(01)00061-3

    Article  Google Scholar 

  32. N. Gontard, S. Guilbert, J.L. Cuq, J. Food Sci. (1992). https://doi.org/10.1111/j.1365-2621.1992.tb05453.x

    Article  Google Scholar 

  33. A.S, T. for, M. ASTM, E96-E80, Standard test Methods for Water Vapor Transmission of Materials (Annual Book of ASTM Standards, 1989)

  34. G.A. Valencia, R.V. Lourenço, A.M.Q.B. Bittante, Do Amaral Sobral. Appl. Clay Sci. (2016). https://doi.org/10.1016/j.clay.2016.02.023

    Article  Google Scholar 

  35. P.J.A. Sobral, Pesqui Agropecu Bras. (2000). https://doi.org/10.1590/S0100-204X2000000600022

    Article  Google Scholar 

  36. A.S, T. for, M. ASTM, D882/12. Standard test methods for tensile properties of thin plastic sheeting, In Annual Book of ASTM Standards (2001)

  37. P. Bergo, I.C.F. Moraes, P.J. Sobral, Starch - Stärke (2012) https://doi.org/10.1002/star.201200023

  38. E.W. Schaefer, J.M.F. Pavoni, C.L. Luchese, D.J.L. Faccin, I.C. Tessaro, Int. J. Biol. Macromol. (2020). https://doi.org/10.1016/j.ijbiomac.2020.01.148

    Article  PubMed  Google Scholar 

  39. Q. Ye, Y. Han, J. Zhang, W. Zhang, C. **a, J. Li, J. Clean. Prod. (2019). https://doi.org/10.1016/j.jclepro.2018.12.277

    Article  Google Scholar 

  40. Y. **ao, Y. Liu, S. Kang, K. Wang, H. Xu, Food Hydrocoll. (2020). https://doi.org/10.1016/j.foodhyd.2020.105898

    Article  Google Scholar 

  41. D. Carpiné, J.L.A. Dagostin, E.F. de Andrade, L.C. Bertan, M.R. Mafra, Ind. Crops Prod. (2016). https://doi.org/10.1016/j.indcrop.2016.01.014

    Article  Google Scholar 

  42. D. Carpiné, J.L.A. Dagostin, L.C. Bertan, M.R. Mafra, Food Bioproc Tech. (2015). https://doi.org/10.1007/s11947-015-1538-4

    Article  Google Scholar 

  43. E.J. Hopkins, C. Chang, R.S.H. Lam, M.T. Nickerson, Food Res. Int. (2015). https://doi.org/10.1016/j.foodres.2014.11.040

    Article  Google Scholar 

  44. H. Taghavi Kevij, M. Salami, M. Mohammadian, M. Khodadadi, Food Hydrocoll (2020) https://doi.org/10.1016/j.foodhyd.2020.106026

  45. A. González, G.N. Barrera, P.I. Galimberti, P.D. Ribotta, C.I. Alvarez, Igarzabal, Food Hydrocoll. (2019). https://doi.org/10.1016/j.foodhyd.2019.105227

    Article  Google Scholar 

  46. L. Tessaro, C.G. Luciano, A.M. Quinta Barbosa Bittante, R.V. Lourenço, M. Martelli-Tosi, José do Amaral Sobral. Food Hydrocoll. (2021). https://doi.org/10.1016/j.foodhyd.2020.106523

    Article  Google Scholar 

  47. B. Gökkaya Erdem, S. Dıblan, S. Kaya, Food and Bioproducts Processing (2019) https://doi.org/10.1016/j.fbp.2019.09.015

  48. R. Tao, J. Sedman, A. Ismail, Food Hydrocoll. (2022). https://doi.org/10.1016/j.foodhyd.2021.107091

    Article  Google Scholar 

  49. F.M. Pelissari, M.M. Andrade-Mahecha, P.J. Sobral, F.C. Menegalli, J Colloid Interface Sci (2017) https://doi.org/10.1016/j.jcis.2017.05.106

  50. J.B. Hutchings, Food Colour and Appearance (Springer, Boston, 1994). https://doi.org/10.1007/978-1-4615-2123-5

    Book  Google Scholar 

  51. M.J. Fabra, P. Talens, A. Chiralt, J. Food Eng. (2008). https://doi.org/10.1016/j.jfoodeng.2007.07.022

    Article  Google Scholar 

  52. P. Guerrero, A. Retegi, N. Gabilondo, K. de la Caba, J. Food Eng. (2010). https://doi.org/10.1016/j.jfoodeng.2010.03.039

    Article  Google Scholar 

  53. C. Valenzuela, L. Abugoch, C. Tapia, LWT - Food Science and Technology, (2013) https://doi.org/10.1016/j.lwt.2012.08.010

  54. M. Chiumarelli, M.D. Hubinger, Food Hydrocoll. (2014). https://doi.org/10.1016/j.foodhyd.2013.11.013

    Article  Google Scholar 

  55. C. **a, S. Zhang, S.Q. Shi, L. Cai, A.C. Garcia, H.R. Rizvi, N.A. D’Souza, Int. J. Biol. Macromol. (2016). https://doi.org/10.1016/j.ijbiomac.2015.11.024

    Article  PubMed  PubMed Central  Google Scholar 

  56. W. **cheng, C. Sihao, J. Appl. Polym. Sci. (2010). https://doi.org/10.1002/app.31684

    Article  Google Scholar 

  57. R.M. Silverstein, F.X. Webster, D. Kiemle, Spectrometric identification of organic compounds., 7th editionJohn Wiley and Sons, New York, (2005)

  58. P. Galvin-King, S.A. Haughey, C.T. Elliott, Foods (2020) https://doi.org/10.3390/foods9070944

  59. N. Harnkarnsujarit, Non-Equilibrium States and Glass Transitions in Foods (Elsevier, 2017), pp. 349–377. https://doi.org/10.1016/B978-0-08-100309-1.00019-5

  60. D.J. McClements, E.A. Decker, in Fenema’s Food Chemistry, ed. By S. Damodaran, K.L. Parkin, O.R. Fennema, 4th editionARTMED, (2010) pp. 155–217

  61. J.D. dos Carvalho, V.B. Oriani, G.M. de Oliveira, M.D. Hubinger, LWT (2019) https://doi.org/10.1016/j.lwt.2018.11.043

  62. H. Chen, C. Wu, X. Feng, M. He, X. Zhu, Y. Li, F. Teng, LWT (2022) https://doi.org/10.1016/j.lwt.2022.113221

Download references

Acknowledgements

The authors gratefully acknowledge “Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)” for the PhD assistantships (Fernanda Ramalho Procopio #141111/2018-6; Mariana Costa Ferraz #140054/2019-7), the productivity grants (Miriam Dupas Hubinger #309022/2021-5; Paulo J. A. Sobral #30.2482/2022-9; Anderson S. Sant’Ana #302763/2014-7, #305804/2017-0) and the financial support (Miriam Dupas Hubinger #428644/2018-0). Miriam Dupas Hubinger thanks FAPESP for the thematic project FAPESP 2019/27354-3. The authors acknowledge the support from “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior” (CAPES-Brazil; Finance code 001).

Funding

This work was supported by “Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)” (#141111/2018-6, #309022/2021-5, #30.2482/2022-9, #302763/2014-7, #305804/2017-0); FAPESP (#2019/27354-3) and “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior” (CAPES-Brazil; Finance code 001).

Author information

Authors and Affiliations

Authors

Contributions

Fernanda Ramalho Procopio: Conceptualization, Investigation, Methodology, Formal analysis, Data curation, Visualization, Writing–original draft; Mariana Costa Ferraz: Methodology, Investigation, Validation; Rodrigo Vinícius Lourenço: Investigation, Data curation, Validation; Ana Mônica Q. B. Bitante: Investigation, Data curation, Validation; Marianna M. Furtado: Investigation, Data curation, Validation; Anderson S. Sant’Ana: Validation, Writing – review & editing; Paulo José do Amaral Sobral: Conceptualization, Supervision, Methodology, Validation, Writing – review & editing, Resources; Miriam Dupas Hubinger: Conceptualization, Supervision, Methodology, Validation, Writing – review & editing, Resources, Project administration, Funding acquisition.

Corresponding author

Correspondence to Fernanda Ramalho Procopio.

Ethics declarations

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Procopio, F.R., Ferraz, M.C., Lourenço, R.V. et al. Soy protein-based films incorporated with co-encapsulated cinnamon and paprika oleoresins. Food Measure 18, 5145–5156 (2024). https://doi.org/10.1007/s11694-024-02562-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-024-02562-2

Keywords

Navigation