Log in

Small-scale districts identification of Boletus bainiugan from Yunnan province of China based on residual convolutional neural network continuous classification models

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Recent studies on the origin of food rarely focus on the source of counties or even small-scale districts, but traceability of small-scale districts of food is the research trend and difficulty for future research. The geographical origin of Boletus bainiugan is of great significance to its safety and economic value. The aim of this study was to provide a new way for the traceability of B. bainiugan in small-scale districts using synchronous two-dimensional correlation spectroscopy (2D-COS) images combined with residual convolutional neural network (ResNet) model. In our study, 550 wild-grown B. bainiugan mushrooms were collected in 28 small-scale districts and their fourier transform near infrared (FT-NIR) were collected. First, samples from nine regions in Yunnan province were identified, and then samples from Chuxiong, Kunming and Yuxi were identified. Most of these models had a 100% accuracy rate and were suitable for identifying the geographical origin of B. bainiugan. In addition, the combination of 7000–4000 cm−1 and 15 contour lines achieves the most reliable accuracy in continuous classification model, with 100% accuracy rate in the training set, the test set and the external verification set, and the loss values were all close to zero (0.018, 0.069, 0.040 and 0.028). The results indicated that the synchronized two-dimensional correlation spectroscopy images combined with the ResNet model had excellent discriminant ability, and this analysis method provided a possibility for food identification in small-scale districts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. JQ Yue ZM Li ZT Zuo YJ Liao HY Huang YZ Wang 2021 Geographical traceability and multielement analysis of edible and medicinal fungi: taking Wolfiporia cocos (F.A .Wolf) Ryvarden and Gilb. as an example J. Food Sci. 86 770 778 https://doi.org/10.1111/1750-3841.15649

    Article  CAS  PubMed  Google Scholar 

  2. M Alikord A Mohammadi M Kamankesh N Shariatifar 2021 Food safety and quality assessment: comprehensive review and recent trends in the applications of ion mobility spectrometry (IMS) Crit. Rev Food Sci. Nutr. https://doi.org/10.1080/10408398.2021.1879003

    Article  PubMed  Google Scholar 

  3. Y Liu JL Huang MH Li YY Chen QQ Cui CY Lu YJ Wang LQ Li Z Xu YF Zhong JM Ning 2022 Rapid identification of the green tea geographical origin and processing month based on near-infrared hyperspectral imaging combined with chemometrics Spectrochim. Acta. A: Mol. Biomol. Spectrosc. 267 120537https://doi.org/10.1016/j.saa.2021.120537

    Article  CAS  PubMed  Google Scholar 

  4. M Arndt M Rurik A Drees K Bigdowski O Kohlbacher M Fischer 2020 Comparison of different sample preparation techniques for NIR screening and their influence on the geographical origin determination of almonds (Prunus dulcis MILL.) Food Control 115 107302 https://doi.org/10.1016/j.foodcont.2020.107302

    Article  CAS  Google Scholar 

  5. JL Zhang H Chen CL Fan S Gao ZJ Zhang L Bo 2020 Classification of the botanical and geographical origins of Chinese honey based on 1H NMR profile with chemometrics Food Res. Int. 137 109714https://doi.org/10.1016/j.foodres.2020.109714

    Article  CAS  PubMed  Google Scholar 

  6. S Yao JQ Li T Li ZL Duan YZ Wang 2019 Geographical traceability of Boletaceae mushrooms using data fusion of FT-IR, UV, and ICP-AES combined with SVM Int. J. Food Prop. 22 414 426 https://doi.org/10.1080/10942912.2019.1588299

    Article  CAS  Google Scholar 

  7. XY Sun F Zhang G Gutiérrez-Gamboa Q Ge PK Xu QW Zhang YL Fang TT Ma 2021 Real wine or not? Protecting wine with traceability and authenticity for consumers: chemical and technical basis, technique applications, challenge, and perspectives Crit. Rev. Food Sci. https://doi.org/10.1080/10408398.2021.1906624

    Article  Google Scholar 

  8. C Cerletti S Esposito L Iacoviello 2021 Edible mushrooms and beta-glucans: impact on human health Nutrients 13 2195 https://doi.org/10.3390/nu13072195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. GB Rosa WG Sganzerla ALA Ferreira LO Xavier NC Veloso J Silva Da GP Oliveira De NC Amaral APDL Veeck JP Ferrareze 2020 Investigation of nutritional composition, antioxidant compounds, and antimicrobial activity of wild culinary-medicinal mushrooms Boletus edulis and Lactarius deliciosus (Agaricomycetes) from Brazil Int. J. Med. Mushrooms 22 931 942 https://doi.org/10.1615/IntJMedMushrooms.2020036347

    Article  PubMed  Google Scholar 

  10. X Meng GS Wang G Wu PM Wang ZL Yang YC Li 2021 The genus Leccinum (Boletaceae, Boletales) from China based on morphological and molecular data J. Fungi 7 732 https://doi.org/10.3390/jof7090732

    Article  CAS  Google Scholar 

  11. Y Zhang MZ Mo L Yang F Mi Y Cao CL Liu XZ Tang PF Wang JP Xu 2021 Exploring the species diversity of edible mushrooms in Yunnan, southwestern China, by DNA barcoding J. Fungi 7 310 https://doi.org/10.3390/jof7040310

    Article  CAS  Google Scholar 

  12. M Merkle D Moran F Warren P Alexander 2021 How does market power affect the resilience of food supply? Global Food Secur. 30 100556https://doi.org/10.1016/j.gfs.2021.100556

    Article  Google Scholar 

  13. YM Wei L Li Y Liu SN **ang HY Zhang LZ Yi Y Shang WT Xu 2022 Identification techniques and detection methods of edible fungi species Food Chem. 374 131803https://doi.org/10.1016/j.foodchem.2021.131803

    Article  CAS  PubMed  Google Scholar 

  14. M Gałgowska R Pietrzak-Fiećko 2021 The level of selected organochlorine compounds residues in popular edible mushrooms from north-eastern Poland Food Chem. 353 129441https://doi.org/10.1016/j.foodchem.2021.129441

    Article  CAS  PubMed  Google Scholar 

  15. E Wielogorska O Chevallier C Black P Galvin-King M Delêtre CT Kelleher SA Haughey CT Elliott 2018 Development of a comprehensive analytical platform for the detection and quantitation of food fraud using a biomarker approach. The oregano adulteration case study Food Chem. 239 32 39 https://doi.org/10.1016/j.foodchem.2017.06.083

    Article  CAS  PubMed  Google Scholar 

  16. LN **e SS Zhao KM Rogers YA **a B Zhang R Suo Y Zhao 2020 A case of milk traceability in small-scale districts-Inner Mongolia of China by nutritional and geographical parameters Food Chem. 316 126332https://doi.org/10.1016/j.foodchem.2020.126332

    Article  CAS  PubMed  Google Scholar 

  17. MY Liang YZ Wang X Qiao YW Lu MH Chen P Li XD Wen J Yang 2019 Structural characterisation and discrimination of the aerial parts of Paris polyphylla var. yunnanensis and Paris polyphylla var. chinensis by UHPLC-QTOF-MS coupled with multivariate data analysis Phytochem. Anal. 30 437 446 https://doi.org/10.1002/pca.2826

    Article  CAS  PubMed  Google Scholar 

  18. HW Qin YZ Wang WZ Yang SB Yang JY Zhang 2021 Comparison of metabolites and variety authentication of Amomum tsao-ko and Amomum paratsao-ko using GC-MS and NIR spectroscopy Sci. Rep. Uk 11 15200 https://doi.org/10.1038/s41598-021-94741-0

    Article  CAS  Google Scholar 

  19. JB Johnson M Naiker 2020 Seeing red: a review of the use of near-infrared spectroscopy (NIRS) in entomology Appl. Spectrosc. Rev. 55 810 839 https://doi.org/10.1080/05704928.2019.1685532

    Article  Google Scholar 

  20. ZY Yan HG Liu JQ Li YZ Wang 2021 Application of identification and evaluation techniques for edible mushrooms: a review Crit. Rev. Anal. Chem. 53 1 21 https://doi.org/10.1080/10408347.2021.1969886

    Article  CAS  Google Scholar 

  21. Â Fernandes J Petrović D Stojković L Barros J Glamočlija M Soković A Martins ICFR Ferreira 2016 Polyporus squamosus (Huds.) Fr from different origins: chemical characterization, screening of the bioactive properties and specific antimicrobial effects against Pseudomonas aeruginosa Lwt Food Sci. Technol. 69 91 97 https://doi.org/10.1016/j.lwt.2016.01.037

    Article  CAS  Google Scholar 

  22. R Tauler H Parastar 2018 Big (Bio)chemical data mining using chemometric methods: a need for chemists Angewandte Chemie International Edition https://doi.org/10.1002/anie.201801134

    Article  Google Scholar 

  23. I Noda 2018 Two-dimensional correlation and codistribution spectroscopy (2DCOS and 2DCDS) analyses of time-dependent ATR IR spectra of D-glucose anomers undergoing mutarotation process in water Spectrochim. Acta. A 197 4 9 https://doi.org/10.1016/j.saa.2017.09.052

    Article  CAS  Google Scholar 

  24. B Debus H Parastar P Harrington D Kirsanov 2021 Deep learning in analytical chemistry Trac Trend. Anal. Chem. 145 116459https://doi.org/10.1016/j.trac.2021.116459

    Article  CAS  Google Scholar 

  25. JB Jiao WC Tu SF He RWH Lau 2017 FormResNet: Formatted residual learning for image restoration IEEE Conf. Comput. Vis. Pattern Recog. Workshops https://doi.org/10.1109/CVPRW.2017.140

    Article  Google Scholar 

  26. BQ Li YY He 2018 An improved ResNet based on the adjustable shortcut connections IEEE Access 6 18967 18974 https://doi.org/10.1109/ACCESS.2018.2814605

    Article  Google Scholar 

  27. J Chen JQ Li T Li HG Liu YZ Wang 2021 Application of UV–Vis and infrared spectroscopy on wild edible bolete mushrooms discrimination and evaluation: a review Crit. Rev. Anal. Chem. 53 1 17 https://doi.org/10.1080/10408347.2021.1984870

    Article  CAS  Google Scholar 

  28. S Lohumi S Lee H Lee BK Cho 2015 A review of vibrational spectroscopic techniques for the detection of food authenticity and adulteration Trends Food Sci. Tech. 46 85 98 https://doi.org/10.1016/j.tifs.2015.08.003

    Article  CAS  Google Scholar 

  29. X Chen J Li T Li H Liu Y Wang 2021 Application of infrared spectroscopy combined with chemometrics in mushroom Appl. Spectrosc. Rev. 58 1 28 https://doi.org/10.1080/05704928.2021.1994415

    Article  Google Scholar 

  30. R Ríos-Reina JM Camiña RM Callejón SM Azcarate 2021 Spectralprint techniques for wine and vinegar characterization, authentication and quality control: advances and projections TrAC Trends Anal. Chem. 134 116121https://doi.org/10.1016/j.trac.2020.116121

    Article  CAS  Google Scholar 

  31. I Noda 1989 Two-dimensional infrared spectroscopy J. Am. Chem. Soc. 111 8116 8118 https://doi.org/10.1021/ja00203a008

    Article  CAS  Google Scholar 

  32. I Noda 2014 Frontiers of two-dimensional correlation spectroscopy. Part 1. New concepts and noteworthy developments J. Mol. Struct. 1069 3 22 https://doi.org/10.1016/j.molstruc.2014.01.025

    Article  CAS  Google Scholar 

  33. I Noda 2014 Frontiers of two-dimensional correlation spectroscopy. Part 2. Perturbation methods, fields of applications, and types of analytical probes J. Mol. Struct. 1069 23 49 https://doi.org/10.1016/j.molstruc.2014.01.016

    Article  CAS  Google Scholar 

  34. L Wang JQ Li T Li HG Liu YZ Wang 2021 Two-dimensional correlation spectroscopy combined with deep learning method and HPLC method to identify the storage duration of porcini Microchem. J. 170 106670https://doi.org/10.1016/j.microc.2021.106670

    Article  CAS  Google Scholar 

  35. X Chen JQ Li HG Liu YZ Wang 2022 A fast multi-source information fusion strategy based on deep learning for species identification of boletes Spectrochim. Acta. A 274 121137https://doi.org/10.1016/j.saa.2022.121137

    Article  CAS  Google Scholar 

  36. JE Dong ZT Zuo J Zhang YZ Wang 2021 Geographical discrimination of Boletus edulis using two dimensional correlation spectral or integrative two dimensional correlation spectral image with ResNet Food Control 129 108132https://doi.org/10.1016/j.foodcont.2021.108132

    Article  Google Scholar 

  37. HE Tahir M Arslan GK Mahunu AA Mariod Z Wen Z **aobo H **aowei S Jiyong H El-Seedi 2020 Authentication of the geographical origin of Roselle (Hibiscus sabdariffa L.) using various spectroscopies: NIR, low-field NMR and fluorescence Food Control 114 107231https://doi.org/10.1016/j.foodcont.2020.107231

    Article  CAS  Google Scholar 

  38. U Saha RA Vann S Chris Reberg-Horton MS Castillo SB Mirsky RJ McGee L Sonon 2018 Near-infrared spectroscopic models for analysis of winter pea (Pisum sativum L.) quality constituents J. Sci. Food Agric. 98 4253 4267 https://doi.org/10.1002/jsfa.8947

    Article  CAS  PubMed  Google Scholar 

  39. A Amirvaresi N Nikounezhad M Amirahmadi B Daraei H Parastar 2021 Comparison of near-infrared (NIR) and mid-infrared (MIR) spectroscopy based on chemometrics for saffron authentication and adulteration detection Food Chem. 344 128647https://doi.org/10.1016/j.foodchem.2020.128647

    Article  CAS  PubMed  Google Scholar 

  40. GX Ren YJ Wang JM Ning ZZ Zhang 2020 Highly identification of keemun black tea rank based on cognitive spectroscopy: near infrared spectroscopy combined with feature variable selection Spectrochim. Acta. A 230 118079https://doi.org/10.1016/j.saa.2020.118079

    Article  CAS  Google Scholar 

  41. ZM Liu SB Yang YZ Wang JY Zhang 2021 Multi-platform integration based on NIR and UV–Vis spectroscopies for the geographical traceability of the fruits of Amomum tsao-ko Spectrochim. Acta. A 258 119872https://doi.org/10.1016/j.saa.2021.119872

    Article  CAS  Google Scholar 

  42. N Landi S Ragucci R Culurciello R Russo M Valletta PV Pedone E Pizzo A Maro Di 2021 Ribotoxin-like proteins from Boletus edulis: structural properties, cytotoxicity and in vitro digestibility Food Chem. 359 129931https://doi.org/10.1016/j.foodchem.2021.129931

    Article  CAS  PubMed  Google Scholar 

  43. Y Zhang F Liu TB Ng 2021 Interrelationship among paraptosis, apoptosis and autophagy in lung cancer A549 cells induced by BEAP, an antitumor protein isolated from the edible porcini mushroom Boletus edulis Int. J. Biol. Macromol. 188 313 322 https://doi.org/10.1016/j.ijbiomac.2021.07.169

    Article  CAS  PubMed  Google Scholar 

  44. Y Zhang R Zhou F Liu TB Ng 2021 Purification and characterization of a novel protein with activity against non-small-cell lung cancer in vitro and in vivo from the edible mushroom Boletus edulis Int. J. Biol. Macromol. 174 77 88 https://doi.org/10.1016/j.ijbiomac.2021.01.149

    Article  CAS  PubMed  Google Scholar 

  45. T Meng SS Yu HY Ji XM Xu AJ Liu 2021 A novel acid polysaccharide from Boletus edulis: extraction, characteristics and antitumor activities in vitro Glycoconjugate J. 38 13 24 https://doi.org/10.1007/s10719-021-09972-0

    Article  CAS  Google Scholar 

  46. JD Zhuang Q **ao T Feng QR Huang CT Ho SQ Song 2020 Comparative flavor profile analysis of four different varieties of Boletus mushrooms by instrumental and sensory techniques Food Res. Int. 136 109485 https://doi.org/10.1016/j.foodres.2020.109485

    Article  CAS  PubMed  Google Scholar 

  47. Y Sakamoto 2018 Influences of environmental factors on fruiting body induction, development and maturation in mushroom-forming fungi Fungal Biol. Rev. 32 236 248 https://doi.org/10.1016/j.fbr.2018.02.003

    Article  Google Scholar 

  48. JQ Yue ZM Li ZT Zuo YL Zhao J Zhang YZ Wang 2021 Study on the identification and evaluation of growth years for Paris polyphylla var. yunnanensis using deep learning combined with 2DCOS Spectrochim. Acta. A 261 120033 https://doi.org/10.1016/j.saa.2021.120033

    Article  CAS  Google Scholar 

  49. ZF Wu CH Shen A Hengel Van Den 2019 Wider or deeper: revisiting the ResNet model for visual recognition Pattern Recogn. 90 119 133 https://doi.org/10.1016/j.patcog.2019.01.006

    Article  Google Scholar 

  50. LM Qi HG Liu JQ Li T Li YZ Wang 2018 Feature fusion of ICP-AES, UV–Vis and FT-MIR for origin traceability of Boletus edulis mushrooms in combination with chemometrics Sensors Basel 18 241 https://doi.org/10.3390/s18010241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. LM Qi J Zhang HG Liu T Li YZ Wang 2017 Fourier transform mid-infrared spectroscopy and chemometrics to identify and discriminate Boletus edulis and Boletus tomentipes mushrooms Int. J. Food Prop. 20 56 68 https://doi.org/10.1080/10942912.2017.1289387

    Article  CAS  Google Scholar 

  52. JQ Yue HY Huang YZ Wang 2022 Extended application of deep learning combined with 2DCOS: study on origin identification in the medicinal plant of Paris polyphylla var. yunnanensis Phytochem. Anal. 33 136 150 https://doi.org/10.1002/pca.3076

    Article  CAS  PubMed  Google Scholar 

  53. JQ Yue WY Li YZ Wang 2021 Superiority verification of deep learning in the identification of medicinal plants: taking Paris polyphylla var. yunnanensis as an example Front. Plant Sci. 12 752863 https://doi.org/10.3389/fpls.2021.752863

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 32160735); the Special Program for the Major Science and Technology Projects of Yunnan Province (Grant No. 202202AE090001); and Special Program for the Major Science and Technology Projects of Yunnan Province (Grant No. 202102AE090051-1-01).

Author information

Authors and Affiliations

Authors

Contributions

**ong Chen: Conceptualization, Methodology, Formal analysis, Writing—Original Draft. JieQing Li: Formal analysis, Investigation, Project administration. HongGao Liu: Data curation, Project administration, Validation. YuanZhong Wang: Resources, Supervision, Project administration, Writing—review & editing.

Corresponding authors

Correspondence to HongGao Liu or YuanZhong Wang.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Li, J., Liu, H. et al. Small-scale districts identification of Boletus bainiugan from Yunnan province of China based on residual convolutional neural network continuous classification models. Food Measure 18, 3851–3867 (2024). https://doi.org/10.1007/s11694-024-02460-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-024-02460-7

Keywords

Navigation